Differences between revisions 3 and 49 (spanning 46 versions)
Revision 3 as of 2011-10-24 08:23:43
Size: 715
Comment:
Revision 49 as of 2011-12-07 10:13:11
Size: 10995
Comment:
Deletions are marked like this. Additions are marked like this.
Line 8: Line 8:
[[NIKA3ListOfflineProcTask| List of offline processing tasks]]
Line 14: Line 16:
The flux per kid is shown here using the calibration on Uranus Scan # The flux per kid is shown here using the calibration on Mars Scan #55. This is an indication that the new camera with its dIdQ modulation scheme provides a big photometric improvement with respect to 2010 campaign. The average flux is compatible with the range of fluxes measured on this (variable) source.
Line 16: Line 19:


==== RZ, 25 Nov 2011 - Pointing & focus effects ====
To derive the source positions I used the pointing maps available in the IRAM Multi Beam FITS (IMBFits) format. However, currently over 20% of the pointing are missing. The statistics shown below is therefore represantative but by far not complete.

{{attachment:gfPoiEq.png}}

Source positions in the eq offsets. Positions of planets are not shown. In red are shown positions of sources used for the pointing model, in black after the installation of the pointing model. The pointing run was apparently performed with Nasmyth offsets of EMIR !
The pointing offsets after the installation of the pointing model are still very large, even 3-5 times larger than the normal values.

{{attachment:gfPoiHor.png}}

As above in the hor system; positions of planets are also shown.

{{attachment:MarsUranus_azOff_extCorr.png}}
{{attachment:MarsUranus_elOff_extCorr.png}}

Effekt of defocusing: the source moves by a couple of arcsec in azim & elev. Note the larger scatter of the elev-positions.

Both, the pointings and foci were done by mapping. However, to correctly process maps the correct beam parameters, i.e. the pixel positions and their flat field are mandatory.
The effective FoV geometry, the flat field and their errors will come next.

==== SL, 07 Nov 2011 - Expected field distortion ====
[[attachment:NIKA_2011_grid_distortion.pdf | grid distortion ]] (updated Dec 1: 2 coefficients of the grid equation were switched)

==== FXD, 21 Nov 2011 - Technical note on kid frequencies ====
 ''FXD, 24 Nov 2011 updated v2.1 (v2.1 Modulation explanation added, v2 Fits format exchange, v1 Basic frequencies)''
[[attachment:NIKA2011_TechNote1_v2.1.pdf | Kid frequencies, fits format]]

==== AM,MC 24 Nov 2011 Spectral transmissions ====
{{attachment:Spectra-single pixel.jpg| (IN/LPSC) Martin-Pupplet Interferometer Spectral Bandpass transmission}}

==== SL, 30 Nov 2011 - Calibration sources with PdB flux references ====
[[attachment:Calibration_sources_NIKA2011_and_PdB.xls | calibrators fluxes ]]

==== MC 24 Nov 2011 RF calculation on Mars ====
{{attachment:fit_IQ.jpg| RF calculation strategies | width=800}}

Blue line is the RFdIdQ as calculated in the standard way. Red, green and black are the results obtained using a 2-d polinomial fit of grade 2, 3 and 4 respectively.

==== MC 24 Nov 2011 dIdQ modulation on strong sources ====
{{attachment:strong_source.jpg| dIdQ of modulation versus dIdQ of signal | width=800}}

The blue line is the trajectory on the IQ plane when observing mars (approx 7kHz signal). The red line is the observed DeltaI, DeltaQ, averaged on 100 points (please do not consider it. It doesn't have a lot of sense. I'll update.). Interesting are the green arrows, whiwh are the dI dQ obtained by the LO modulation: near the peak of the source, where we get far from the resonances, they get farther from the tangent of the IQ trajectory... to be investigated!



==== RZ, 30 Nov 2011 - Beam maps ====
To determine the pixel positions, the effective beam shapes and the flat field I used 9 Mars maps observed from Oct 17 to 22. Maps observed later on are of too bad quality. I could use sources weaker than Mars (Uranus, Neptune, ...) with sky noise filtering to determine the pixel positions & beams, but without the line-of-sight tau-corrections could not calculate the flat field. The pixels which show a clear cross-talk within the main beam were excluded.

==== FoV geometry ====

{{attachment:rpo1mmMeanEdge_1_9_with3_29.png | scatter of pixel positions}}
{{attachment:avRPo1mmMeanEdge_1_9.png | average FoV 1mm}}

The figure above left (scatter of pixel positions) shows the derived pixel positions in each of the maps. Different markers and colors correspond to different maps. The scatter of the positions is larger in the centre and in the upper(left) part of NIKA, i.e this cannot be an atmospheric effect (anomalous refraction). For the few examples I checked, the changed positions were due to a cross-talk.
The resulting average pixel positions are shown above right (fig. average FoV 1mm).

==== Centre of Nasmyth rotation ====
One very important point cannot be properly checked using the available data: the centre of the Nasmyth rotation. This centre is defined by the rotation axis of the mirror M3, but its determination depends also on the pointing behaviour. The ultimate proof would be if all the usable pixels would always show the source at one position, i.e. independent of the elevation and azimuth. For all coordinate transformations I had to assume this centre is close to pixel #21 (22 in my plots), as given by FXD.

==== Flat field ====
Update Dec 7: flat field for the beam in the near field.

Two flat fields are necessary for the data processing: for the far field (i.e. main beam = astronomical sources, MBFF) and for the near field (sky noise, i.e. the correlated signal, CSFF). The correct main beam flat should use integrals over the main beams. However, because the reason(s) for the beam broadening (see below) are not clear to me, I used just the peak fluxes, i.e. a flat field (PFFF) valid only for on-offs observed with not filled receiver arrays like MAMBO, LABOCA or SCUBA. Currently I also did not use any extinction corrections. The peak flux flat field shown below is therefore just indicative.

To calculate the flat for the beams in the near field in higher than first order approximation, just the slopes of the correlation distributions in data of weak sources are sufficient, i.e. when the assumption noise=data can be made (see "5 Dec 2011 - Instabilities, changed flat field, ..." below). This flat field shows unusually high variation across the FoV - roughly 200%. The normal values should be below 30%. Note that the calculation of the CSFF does not need any beam sizes.

{{attachment:ffMxAv.png | peakFlux flat field}}
{{attachment:csffRef22_run3.png | corrSig flat field}}

==== Beam broadening ====
Strange beam broadening is visible both at 1 and 2mm. Two examples for Mars and Neptune are shown below.

{{attachment:NIKA1mm-20111019s52_indFFmxRef22_1_rcp.png | beams 1mm Mars}}
{{attachment:NIKA1mm-20111017s335_csf_indFFmxRef22_2_rcp.png | beams 1mm Neptune}}

Pixel #1 is not reliable. Note also the larger and elliptical beams of pixels #29 and 40 for Neptune. This is an effect of the cross-talk.

The beam broadening is visible also in I & Q (below) and at 2mm (not shown).

{{attachment:NIKA1mm-20111019s52_indFFmxRef22_ph1_1_rcp.png | beam broadening in I}}
{{attachment:NIKA1mm-20111019s52_indFFmxRef22_ph2_1_rcp.png | beam broadening in Q}}

For comparison, below are shown the beam sizes @1mm during run 2.

{{attachment:NIKA1mm-20101020s226_avFFgf_ref2mm_rcp.png | FoV and beams 1mm run2}}

==== Average beam sizes ====
For pointing sources weaker than roughly Neptune the errors of individual beams are too large to allow the check of the beam change across the FoV. Only the average beam shape can be fitted with sufficient accuracy. The figure below shows the major (triangles) and minor (circles) FWHM for all pointing sources available in the IMBFits format.
There is a clear change of the observed beam size after the pointing run, but within the errors no dependence on the source flux. The reason for the smaller FWHM during the pointing run is not clear to me. The bad tracking of the sources (recall: the pointing run was performed with Nasmyth offsets of EMIR) could explain only an increase of the major axis (a kind of a "comet"-effect) but not the decrease of the minor axis.
However, as SL pointed, it was discovered on 18th that the mirror M7 was moved. The change of the FWHM corresponds to the re-adjustement of M7. Is this just a coincidence or the explanation for the changed average FWHM ?

The change of the FWHM across the FoV is definitely not related to the M7 problem - it was present before and after the re-adjustment of M7.

{{attachment:fwhm1mmMJD.png | major and minor source sizes}}

Example beam maps obtained on Mars (~160Jy), Uranus (~33.5Jy) and Neptune (~12.6Jy) with NIKA1mm are show below. The contour levels are at 0.4, 0.8, 1.6 ... 25.6 and 50%, for Mars also at 0.1 and 0.2% (in yellow). The averaged FWHM is in all cases ~15arcsec.

{{attachment:NIKA1mm-20111019s52_aver.png | MarsbeamMap 1mm}}
{{attachment:NIKA1mm-20111019s220_brCobl1_csfRan65_aver.png | Uranus beamMap 1mm}}
{{attachment:NIKA1mm-20111017s335_br50bl1csfRan65_aver.png | Neptune beamMap 1mm}}

==== Origin of the large pointing errors ====
All the errors and effects shown above: scatter of the pixel positions, effect of the focus, imperfect pointing model a.s.o., cannot explain the very large (>10arcsec) pointing offsets. There must be still another problem I could not identify.


==== RZ, 1 Dec 2011 - The ''plateau'' ====

{{attachment:NIKA1mm-20111019s52_2_Jy.png | plateau all pixs Jy}}

Details of the ''plateau''. The intensity scale is Jy/beam. The contour is at 9.5Jy/beam.

{{attachment:NIKA1mm-20111019s52_Jy_rows.png | plateau rows Jy}}
{{attachment:NIKA1mm-20111019s52_Jy_cols.png | plateau columns Jy}}

Intensity profiles per row (i.e. along the azimuth) and column (i.e. along the elevation) of pixels #22 (in red), #80 (in green), #102 (in cyan) and #105 (in blue).

{{attachment:NIKA1mm-20111019s52_ph1.png | plateau in I}}
{{attachment:NIKA1mm-20111019s52_ph2.png | plateau in Q}}

The Mars map 20111019s52 in I and Q.

==== RZ, 5 Dec 2011 - Instabilities, changed flat field, nonlinearities ====
The correlation plots below show few examples of instabilities, changed flat field and nonlinearities of the 1mm signal

{{attachment:NIKA1mm-20111018s159_instab.png}}
{{attachment:NIKA1mm-20111019s6_instab.png}}
{{attachment:NIKA1mm-20111019s78_instab.png}}
{{attachment:NIKA1mm-20111022s75_instab.png}}
{{attachment:NIKA1mm-20111023s30_notLin.png}}

NIKA3 Offline Processing Results

2011 October run

=Private results for the collaboration only=

Public results

List of offline processing tasks

FXD, 24 Oct 2011 - Photometric quality

Here are the maps obtained on one OTF scan with IRC 10216. Sky noise decorrelation is used.

IRC 10216 Scan65 18th 2mm map

IRC 10216 Scan65 18th 1mm map

The flux per kid is shown here using the calibration on Mars Scan #55. This is an indication that the new camera with its dIdQ modulation scheme provides a big photometric improvement with respect to 2010 campaign. The average flux is compatible with the range of fluxes measured on this (variable) source.

IRC 10216 Scan65 18th Flux per kid

RZ, 25 Nov 2011 - Pointing & focus effects

To derive the source positions I used the pointing maps available in the IRAM Multi Beam FITS (IMBFits) format. However, currently over 20% of the pointing are missing. The statistics shown below is therefore represantative but by far not complete.

gfPoiEq.png

Source positions in the eq offsets. Positions of planets are not shown. In red are shown positions of sources used for the pointing model, in black after the installation of the pointing model. The pointing run was apparently performed with Nasmyth offsets of EMIR ! The pointing offsets after the installation of the pointing model are still very large, even 3-5 times larger than the normal values.

gfPoiHor.png

As above in the hor system; positions of planets are also shown.

MarsUranus_azOff_extCorr.png MarsUranus_elOff_extCorr.png

Effekt of defocusing: the source moves by a couple of arcsec in azim & elev. Note the larger scatter of the elev-positions.

Both, the pointings and foci were done by mapping. However, to correctly process maps the correct beam parameters, i.e. the pixel positions and their flat field are mandatory. The effective FoV geometry, the flat field and their errors will come next.

SL, 07 Nov 2011 - Expected field distortion

grid distortion (updated Dec 1: 2 coefficients of the grid equation were switched)

FXD, 21 Nov 2011 - Technical note on kid frequencies

  • FXD, 24 Nov 2011 updated v2.1 (v2.1 Modulation explanation added, v2 Fits format exchange, v1 Basic frequencies)

Kid frequencies, fits format

AM,MC 24 Nov 2011 Spectral transmissions

(IN/LPSC) Martin-Pupplet Interferometer Spectral Bandpass transmission

SL, 30 Nov 2011 - Calibration sources with PdB flux references

calibrators fluxes

MC 24 Nov 2011 RF calculation on Mars

RF calculation strategies

Blue line is the RFdIdQ as calculated in the standard way. Red, green and black are the results obtained using a 2-d polinomial fit of grade 2, 3 and 4 respectively.

MC 24 Nov 2011 dIdQ modulation on strong sources

dIdQ of modulation versus dIdQ of signal

The blue line is the trajectory on the IQ plane when observing mars (approx 7kHz signal). The red line is the observed DeltaI, DeltaQ, averaged on 100 points (please do not consider it. It doesn't have a lot of sense. I'll update.). Interesting are the green arrows, whiwh are the dI dQ obtained by the LO modulation: near the peak of the source, where we get far from the resonances, they get farther from the tangent of the IQ trajectory... to be investigated!

RZ, 30 Nov 2011 - Beam maps

To determine the pixel positions, the effective beam shapes and the flat field I used 9 Mars maps observed from Oct 17 to 22. Maps observed later on are of too bad quality. I could use sources weaker than Mars (Uranus, Neptune, ...) with sky noise filtering to determine the pixel positions & beams, but without the line-of-sight tau-corrections could not calculate the flat field. The pixels which show a clear cross-talk within the main beam were excluded.

FoV geometry

scatter of pixel positions average FoV 1mm

The figure above left (scatter of pixel positions) shows the derived pixel positions in each of the maps. Different markers and colors correspond to different maps. The scatter of the positions is larger in the centre and in the upper(left) part of NIKA, i.e this cannot be an atmospheric effect (anomalous refraction). For the few examples I checked, the changed positions were due to a cross-talk. The resulting average pixel positions are shown above right (fig. average FoV 1mm).

Centre of Nasmyth rotation

One very important point cannot be properly checked using the available data: the centre of the Nasmyth rotation. This centre is defined by the rotation axis of the mirror M3, but its determination depends also on the pointing behaviour. The ultimate proof would be if all the usable pixels would always show the source at one position, i.e. independent of the elevation and azimuth. For all coordinate transformations I had to assume this centre is close to pixel #21 (22 in my plots), as given by FXD.

Flat field

Update Dec 7: flat field for the beam in the near field.

Two flat fields are necessary for the data processing: for the far field (i.e. main beam = astronomical sources, MBFF) and for the near field (sky noise, i.e. the correlated signal, CSFF). The correct main beam flat should use integrals over the main beams. However, because the reason(s) for the beam broadening (see below) are not clear to me, I used just the peak fluxes, i.e. a flat field (PFFF) valid only for on-offs observed with not filled receiver arrays like MAMBO, LABOCA or SCUBA. Currently I also did not use any extinction corrections. The peak flux flat field shown below is therefore just indicative.

To calculate the flat for the beams in the near field in higher than first order approximation, just the slopes of the correlation distributions in data of weak sources are sufficient, i.e. when the assumption noise=data can be made (see "5 Dec 2011 - Instabilities, changed flat field, ..." below). This flat field shows unusually high variation across the FoV - roughly 200%. The normal values should be below 30%. Note that the calculation of the CSFF does not need any beam sizes.

peakFlux flat field corrSig flat field

Beam broadening

Strange beam broadening is visible both at 1 and 2mm. Two examples for Mars and Neptune are shown below.

beams 1mm Mars beams 1mm Neptune

Pixel #1 is not reliable. Note also the larger and elliptical beams of pixels #29 and 40 for Neptune. This is an effect of the cross-talk.

The beam broadening is visible also in I & Q (below) and at 2mm (not shown).

beam broadening in I beam broadening in Q

For comparison, below are shown the beam sizes @1mm during run 2.

FoV and beams 1mm run2

Average beam sizes

For pointing sources weaker than roughly Neptune the errors of individual beams are too large to allow the check of the beam change across the FoV. Only the average beam shape can be fitted with sufficient accuracy. The figure below shows the major (triangles) and minor (circles) FWHM for all pointing sources available in the IMBFits format. There is a clear change of the observed beam size after the pointing run, but within the errors no dependence on the source flux. The reason for the smaller FWHM during the pointing run is not clear to me. The bad tracking of the sources (recall: the pointing run was performed with Nasmyth offsets of EMIR) could explain only an increase of the major axis (a kind of a "comet"-effect) but not the decrease of the minor axis. However, as SL pointed, it was discovered on 18th that the mirror M7 was moved. The change of the FWHM corresponds to the re-adjustement of M7. Is this just a coincidence or the explanation for the changed average FWHM ?

The change of the FWHM across the FoV is definitely not related to the M7 problem - it was present before and after the re-adjustment of M7.

major and minor source sizes

Example beam maps obtained on Mars (~160Jy), Uranus (~33.5Jy) and Neptune (~12.6Jy) with NIKA1mm are show below. The contour levels are at 0.4, 0.8, 1.6 ... 25.6 and 50%, for Mars also at 0.1 and 0.2% (in yellow). The averaged FWHM is in all cases ~15arcsec.

MarsbeamMap 1mm Uranus beamMap 1mm Neptune beamMap 1mm

Origin of the large pointing errors

All the errors and effects shown above: scatter of the pixel positions, effect of the focus, imperfect pointing model a.s.o., cannot explain the very large (>10arcsec) pointing offsets. There must be still another problem I could not identify.

RZ, 1 Dec 2011 - The ''plateau''

plateau all pixs Jy

Details of the plateau. The intensity scale is Jy/beam. The contour is at 9.5Jy/beam.

plateau rows Jy plateau columns Jy

Intensity profiles per row (i.e. along the azimuth) and column (i.e. along the elevation) of pixels #22 (in red), #80 (in green), #102 (in cyan) and #105 (in blue).

plateau in I plateau in Q

The Mars map 20111019s52 in I and Q.

RZ, 5 Dec 2011 - Instabilities, changed flat field, nonlinearities

The correlation plots below show few examples of instabilities, changed flat field and nonlinearities of the 1mm signal

NIKA1mm-20111018s159_instab.png NIKA1mm-20111019s6_instab.png NIKA1mm-20111019s78_instab.png NIKA1mm-20111022s75_instab.png NIKA1mm-20111023s30_notLin.png

OffProcNika3 (last edited 2012-05-25 09:50:44 by NikaBolometer)