Differences between revisions 3 and 4
Revision 3 as of 2009-02-12 15:18:24
Size: 3663
Editor: visitor3
Comment:
Revision 4 as of 2009-02-12 15:21:19
Size: 3638
Editor: visitor3
Comment:
Deletions are marked like this. Additions are marked like this.
Line 30: Line 30:
 1. '''Gain-elevation curves.''' The most recent curves are given in the IRAM Annual Report 2007 attachment:IRAM_2007.pdf  1. '''Gain-elevation curves.''' The most recent curves are given in the IRAM Annual Report 2007

Telescope efficiencies and beam widths

  • Below you find the forward and beam efficiencies upto 280 GHz measured in March 2005 ([http://www.iram.fr/IRAMFR/ARN/aug05/node6.html IRAM Newsletter 8/05]). Values above 300 GHz are predictions based on the observations compiled in the IRAM Annual Report 2007 attachment:IRAM_2007.pdf ).

    freq

    HPBW

    Beff

    Aeff

    S/TA*

    Feff

    Comments

    (GHz)

    (arcsec)

    (%)

    (%)

    (Jy/K)

    (%)

    (1)

    (2)

    (3)

    (4)

    (5)

    (6)

    72 (extrapolated)

    34

    79

    6.0

    95

    77 (extrapolated)

    32

    79

    6.0

    95

    86

    29

    78

    6.0

    95

    110

    22

    75

    6.3

    95

    145

    17

    69

    6.7

    93

    170

    14.5

    65

    7.1

    93

    210

    12

    57

    7.9

    91

    235

    10.5

    52

    8.7

    91

    260

    9.5

    46

    9.5

    88

    279

    9

    42

    10.4

    88

    310

    7.9

    37

    predicted

    345

    7.1

    32

    predicted

    360

    6.8

    30

    predicted

  • The half power beam width, HPBW, can be well fitted by: HPBW/arcsec = 2460/freq/GHz.

  • Main beam efficiency Beff. The data can be well fit by a Ruze function Beff = 1.2 Aeff' exp[-(4pi R sigma/ lambda)^2] with sigma being the rms value of the surface errors of the main dish, R the reduction factor for a steep main reflector, Aeff' is the aperture efficieny of the perfect telescope and lambda the wavelength in mm. The data can be fitted by R*sigma = 0.07 and epsilon = 0.69.

  • Aperture efficiency, Aeff. The aperture efficiency of the 30m telescope can be obtained via pointings on point-like celestial calibrators like Uranus or Mars. In the approximation that the beam is Gaussian and the edge taper is -14dB, it can also be derived from the beam efficiency using Aeff=Beff*0.80 (attachment:spatial_response_framework_v1.8.pdf)

  • Point source sensitivity S/TA*. S/TA* is 3.906*Feff/Aeff Jy/K for the 30m (see attachment:cali_rep.pdf).

  • Gain-elevation curves. The most recent curves are given in the IRAM Annual Report 2007

  • Forward efficiency Feff. The values for Feff are valid after the 12th of December 2000 when a new reflecting ring was put around the secondary mirror. Forward efficiencies are derived from skydips.

  • Error beams. A part of the power pattern is distributed in three error beams (see the analysis of attachment:greve_1998.pdf). The size of the described Gaussians is unchanged, however the main beam efficiencies have been improved in the meanwhile, lowering the strengths of the error beams. A new paper is in preparation. Astronomers should take the contribution of the error beam into account when converting antenna temperatures to brightness temperatures, especially when mapping extended sources.

  • Historic values: [http://www.iram.es/IRAMES/telescope/telescopeSummary/beam_effis.html Plot of efficiencies against frequency, measured in 2000], [http://www.iram.es/IRAMES/telescope/telescopeSummary/effi_history.html Compilation of efficiencies obtained in the past till 2001].

[#beginOfPage Back to top]

[http://www.iram.es/IRAMES/mainWiki/TelescopeSystemSummary Back to the IRAM 30m System Summary]

Iram30mEfficiencies (last edited 2016-11-03 18:07:57 by CarstenKramer)