Informations useful for the observations: List of Astronomical Target, Pako scripts, observing procedures and strategies for performance verifications and debugging

List of Astronomical Target for Nika Jun 2012 run4

FXD: First version before run (27/05/2012)

Back to the NIKA run4 page

1. Planets Mars for photometric calibration (primary calibrators)

Name

Right Ascension

Declination

Size (arcsecond diameter)

Flux @ 1.25 mm

Flux @ 2.05 mm

MARS

09:27:52.1030

06:55:16.786

7.85 * 7.81

391.1 Jy

134.7 Jy

Here are the ephemeris for the planets

and the other objects LST Pointing quasars Strong galactic sources

2. Usual bright quasars

3. List of bright ultracompact HII regions

Here is the full detailed formatted list Source_list_fmt2012v1.0.txt with fluxes

Here is the catalog for Pako NIKA2012v1.0.sou.txt has to be RENAMED to NIKA.sou on the pako computer Here is a list of IRAM pointing sources with fluxes at 3mm and 2mm (I miss fluxes at 1mm, SL) ListAstroTargetNika3/IRAM_pointing_sources_with_fluxes.xls


Interface with the telescope: Pako

Here is a short manual on useful "Pako for Nika" commands Pako_helpv9.txt

Here is a collection of Pako scripts to gain time and have a reference on the observations we will do (to use them rename the files without the .txt, 2nd version updated with slower mapping speed to minimize tracking errors, 3rd version include pako line continuation sign (-)):

nini.pako => run the initial series of commands that always have to be run at the beginning of an observing session, updated with choice of receiver and backend allowing to get fits files, updated with correct focus and correct nasmyth offset deduced from pointing model session from 17 to 18/10/2011 night.

ListAstroTargetNika3/OTF_pointing.pako => OTFMAP 100"x84" in 22 subscan x 10 s = 4+1 ~= 5 min (10"/s) with 2.6 samples (subscan step) per convolved 1mm HPBW (for pointing & focus). 10s = minimum subscan time possible (Pako doesn't authorizes less), hence the choice of subscan length. Scan height changed from 60" to 92" to have more margins for the useful pixels.

ListAstroTargetNika3/OTF_geometry.pako => OTFMAP 300"x220" in 56 subscan x 20 s = 19+3 ~= 22 min (15"/s) with 2.6 samples (subscan step) per convolved 1mm HPBW (for the array geometry = pixels map in sky)

ListAstroTargetNika3/OTF_ps.pako => OTFMAP 140"x90" in 19 subscan x 14 s = 4+1 ~= 5 min (10"/s) with 2 sample (subscan step) per convolved 1mm HPBW (for point source observations)

ListAstroTargetNika3/OTF_2x2.pako => OTFMAP 120"x120" in 25 subscan x 12 s = 5+1 ~= 6 min (10"/s) with 2 samples (subscan step) per convolved 1mm HPBW (for extended source < 2')

ListAstroTargetNika3/OTF_5x5.pako => OTFMAP 300"x300" in 51 subscan x 20 s = 17+3 ~= 20 min (15"/s) with 1.7 samples (subscan step) per convolved 1mm HPBW (for extended source < 5')

ListAstroTargetNika3/OTF_10x10.pako => OTFMAP 600"x600" in 41 subscan x 30 s = 20+4 ~= 24 min (20"/s) with 0.7 samples (subscan step) per convolved 1mm HPBW (for very extended source < 10')

ListAstroTargetNika3/OTF_faint_source.pako => OTFMAP 120"x80" in 21 subscan x 12 s = 4.2+0.8 ~= 5 min (10"/s) with 2.6 samples (subscan step) per convolved 1mm HPBW (for faint sources)

ListAstroTargetNika3/OTF_deep_field.pako => OTFMAP 360"x360" in 61 subscan x 20 s = 20+4 ~= 24 min (18"/s) with 1.7 samples (subscan step) per convolved 1mm HPBW (for faint sources)

ListAstroTargetNika3/OTF_sz.pako => OTFMAP 360"x240" in 41 subscan x 20 s = 14+3 ~= 17 min (18"/s) with 1.7 samples (subscan step) per convolved 1mm HPBW (for faint sources)

ListAstroTargetNika3/OTF_moon.pako => OTFMAP 2000x 2000 in 34 subscan x 40 s = 23+3 ~= 26 min with 0.17 samples (subscan step = 60) per convolved 1mm HPBW (to look at the moon in bad weather)

Here's an excel sheet which helps to find the best focus thanks to a 2nd order polynomial line trend fitting on beam width and amplitude (note that amplitude is much more robust):

Full focus Excel only,

Best focus with basic 2nd order polynomial


Status of observations

spread sheet of sources with integrated time


Observing procedures and strategies for performances verifications and debugging

Observations procedure as discussed between FXD, RZ, NP & SL on 30/5/2012

  1. Use the EMIR pointing model as the starting reference, setting Nasmyth offsets to 0.
  2. Do a "classical" POINTING (cross)
  3. Do a "NIKA type" OTF-POITING
  4. Implement Nasmyth correction to point on the central pixel
  5. Check with POINTING
  6. Idem using the WOBBLER (expected setup: SWOBBLER -25 25 ttphase 0.52 ; assymetric wobble impossible, must be wide enough w.r.t. beam, as fast as possible without being harmonic of something)
  7. 1st crude FOCUS with wobbler ("classical" procedure): 6 subscans, 2mm shifts
  8. 1st crude Focus without Wobbler: new NIKA style: one line OTF scan way and back; 3 scans, set focus between scans 2 mm shifts
  9. 1st crude FOCUS with wobbler, 1mm shifts
  10. 1st crude OTF-FOCUS (without Wobbler), 1mm shifts
  11. 1st OTF-GEOMETRY (scan width = baseline x 2 + FOV + max pointing error = 1x2 + 2.5 + 1 + 0.5 = 5')
  12. 1st OTF pointing session (as many quasar as possible in the 6 h slot, probably ~15 ?) => define the NIKA pointing model (15 is not enough stat for a clear determination, but should be OK at 1st order)

  13. better FOCUS with wobbler ("classical" procedure): 6 subscans, 2mm shifts
  14. better Focus without Wobbler: new NIKA style: one line OTF scan way and back; 3 scans, set focus between scans 2 mm shifts
  15. better FOCUS with wobbler, 1mm shifts
  16. better OTF-FOCUS (without Wobbler), 1mm shifts
  17. better OTF-GEOMETRY (scan width = baseline x 2 + FOV + max pointing error = 1x2 + 2.5 + 1 + 0.5 = 5')
  18. OTF-GEOMETRY for different foci => focus characteristics for all pixels

  19. OTF pointing session => define a better NIKA pointing model

  20. test skydip going at high airmass values (at least 3)
  21. observe typical calibrators 1-20 Jy (e.g. OJ)
  22. observe known fainter sources (e.g. Tau sources)
  23. redo this procedure the next day

Note: good focus depend on geometry which depend on focus ==> iterative process.

How to find the elevation axis with the observation ? This is degenerate with the pointing model => Iterative approach => accumulate statistics. Due to the degeneracy one as to make a choice on the strategy for the definition of the center of rotation of the array (rotation with elevation of the sky image). After discussions the next days: at the start of the run we will choose the best of the 4 pixels at the center of the array and define it as the center for the pointing model.

For skydips: do a frequency sweep at each airmass step => up to airmass = 3 or 4. This will give the position of the resonance frequency = total power. Each step has to be done manually; in the future implement Pako script and CAMADIA to to the frequency sweep automatically at each step.

How to investigate the plateau, beam broadening etc. => gain of amplifiers and power on the tone are the hardware parameters that we will change => write the information in Wiki log pages (this is in the raw data anyway, but discuss with Alain to get all the info in the FITS).

IMBFITS format: keep same structure as before run (e.g. with a fixed number of pixels close to the maximum available, not a varying number of pixels), except the implementation of Wobbler information (TTL = 0 - 40, with numbers in between = blancking)

Strategy to investigate the Plateau

Since we see the plateau on 31/05/2012 pointing scans with crosses patterns, we will use these fast scans to investigate the plateau, the width should be larger than the plateau itself, that is to say bigger than the array with margins ==> 3 arcmin widths.

So far (01/06/2012) we identify 3 hardware parameters we could play on:

==> This should allow us to determine whether the plateau is a pure electronic effect, and have ideas on what causes it.