Differences between revisions 24 and 26 (spanning 2 versions)
Revision 24 as of 2009-02-12 17:16:00
Size: 3781
Editor: visitor3
Comment:
Revision 26 as of 2009-02-12 18:47:29
Size: 3915
Editor: visitor3
Comment:
Deletions are marked like this. Additions are marked like this.
Line 5: Line 5:
=== Efficiencies measured in August 2007 (compiled by JP) === === Efficiencies measured 8/07 (and 6/08) ===
Line 14: Line 14:

 * measurements were conducted by CT & JP and compiled by JP, 12.2.2009
 * ABCD receivers
 * Uranus and Mars, while small (Tb from ASTRO/GILDAS)

TableOfContents(4)

Telescope efficiencies and beam widths

Efficiencies measured 8/07 (and 6/08)

  • Freq

    HPBW

    Feff

    Beff

    Aeff

    S/TA*

    Comments

    GHz

    arcsec

    %

    %

    %

    Jy/K

    86

    28.5

    98

    78

    64

    5.9

    145

    16.9

    95

    64

    53

    6.9

    210

    11.3

    94

    62

    51

    7.2

    260

    9.0

    90

    53

    44

    8.0

    345

    7.0

    87

    39

    32

    10.6

    estimated

  • measurements were conducted by CT & JP and compiled by JP, 12.2.2009

  • ABCD receivers
  • Uranus and Mars, while small (Tb from ASTRO/GILDAS)
  • Half power beam width HPBW. The HPBW can be well fitted by: HPBW/arcsec=2406/Freq/GHz or HPBW/rad=1.166 W/D, with the wavelength W and the telescope diameter D.

  • Forward efficiency Feff. The values for Feff were updated after the 12th of December 2000 when a new reflecting ring was put around the secondary mirror. Forward efficiencies are derived from skydips. Values in the table are from measurements in August 2007.

  • Main beam efficiency Beff. Beff is the ratio of main beam solid angle over the entire antenna pattern solid angle. It is best derived from a source which has a diameter comparable to the size of the main beam. It can be calculated from the peak antenna temperature TA*, the HPBW, the source diameter, and source brightness temperature Tb (see Eq. 18 of attachment:cali_rep.pdf). For a source which fills the main beam, Beff=TA* Feff/Jnu(Tb), where Jnu(Tb) is the Rayleigh Jeans brightness temperature at frequency nu. Here, we assumed a pure Gaussian beam, and derived Beff from Aeff using Beff=1.21Aeff (CHECK: Reference).

  • Aperture Efficiency Aeff. Aeff can be obtained via pointings on point-like celestial calibrators with a well known flux, like Uranus or Mars, when it is small. Aeff can be computed from 3.906 K TA* Feff / Ssou, where K is the correction factor that considers the coupling of the disk size of the planet to the HPBW, TA* is the peak antenna temperature, and Ssou is the intrinsic flux density of the planet. (see Eq.16 in attachment:cali_rep.pdf or attachment:spatial_response_framework_v1.8.pdf)

  • Point source sensitivity S/TA*. S/TA* is expressed as 3.906 Feff/Aeff in Jy/K (see Eq.17 in attachment:cali_rep.pdf)

  • Error beams. A part of the power pattern is distributed in three error beams (see the analysis of attachment:greve_1998.pdf). The size of the described Gaussians is unchanged, however the main beam efficiencies have been improved since 1998, lowering the strengths of the error beams. A new paper is in preparation. Astronomers should take the contribution of the error beam into account when converting antenna temperatures to brightness temperatures, especially when mapping extended sources.

Gain elevation curves

Gain elevation curves show the point source sensitivity or aperture efficiency of the telescope versus elevation. The measurements of August 2007, indicate a maximum gain at 49.2deg, as the following image shows.

attachment:gain-el-aug07.png

Historic efficiencies


[#beginOfPage Back to top]

[http://www.iram.es/IRAMES/mainWiki/TelescopeSystemSummary Back to the IRAM 30m System Summary]

Iram30mEfficiencies (last edited 2016-11-03 18:07:57 by CarstenKramer)