5192
Comment:
|
4124
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
[[TableOfContents(4)]] |
|
Line 3: | Line 5: |
* Below you find the forward and beam efficiencies upto 280 GHz measured in March 2005 ([http://www.iram.fr/IRAMFR/ARN/aug05/node6.html IRAM Newsletter 8/05]). ). || '''freq''' || '''HPBW''' || '''Beff''' || '''Aeff''' || '''S/TA*''' || '''Feff''' || '''Comments''' || || '''(GHz)''' || '''(arcsec)''' || '''(%)''' || '''(%)''' || '''(Jy/K)''' || '''(%)''' || || || || (1) || (2) || (3) || (4) || (5) || (6) || ||72 (extrapolated) || 34 || 79 || || 6.0 || 95 || || ||77 (extrapolated) || 32 || 79 || || 6.0 || 95 || || ||86 || 29 || 78 || || 6.0 || 95 || || ||110 || 22 || 75 || || 6.3 || 95 || || ||145 || 17 || 69 || || 6.7 || 93 || || ||170 || 14.5 || 65 || || 7.1 || 93 || || ||210 || 12 || 57 || || 7.9 || 91 || || ||235 || 10.5 || 52 || || 8.7 || 91 || || ||260 || 9.5 || 46 || || 9.5 || 88 || || ||279 || 9 || 42 || ||10.4 || 88 || || 1. The '''half power beam width, HPBW''', can be well fitted by: HPBW/arcsec = 2460/freq/GHz. 1. '''Main beam efficiency Beff.''' The data can be well fit by a Ruze function Beff = 1.2 Aeff' exp[-(4pi R sigma/ lambda)^2] with sigma being the rms value of the surface errors of the main dish, R the reduction factor for a steep main reflector, Aeff' is the aperture efficieny of the perfect telescope and lambda the wavelength in mm. The data can be fitted by R*sigma = 0.07 and epsilon = 0.69. === New values measured in August 2007 === |
=== Efficiencies measured 8/07 (and 6/08) === |
Line 32: | Line 14: |
* measurements were conducted by CT & JP and compiled by JP, 12.2.2009 * ABCD receivers * Uranus and Mars, while small. Planetary brightness temperatures Tb from ASTRO/GILDAS: * Mars: 215K constant with frequency * Uranus: 139K at 86GHz, 116K at 145GHz, 102K at 210GHz, 94.5K at 260GHz, 85.6K at 345GHz following Griffin & Orton 1993 |
|
Line 45: | Line 33: |
1. Historic values: * [http://www.iram.es/IRAMES/telescope/telescopeSummary/telescope_summary.html Efficiencies of 2005] * [http://www.iram.es/IRAMES/telescope/telescopeSummary/beam_effis.html Plot of efficiencies against frequency, measured in 2000], * [http://www.iram.es/IRAMES/telescope/telescopeSummary/effi_history.html Compilation of efficiencies obtained in the past till 2001]. |
|
Line 52: | Line 37: |
Gain elevation curves show the point source sensitivity or aperture efficiency of the telescope versus elevation. The measurements of August 2007, indicate a maximum gain at 49.2deg, as the following image shows. | Gain elevation curves show the point source sensitivity or aperture efficiency of the telescope versus elevation. Fits to the observations of August 2007, indicate a maximum gain at 49.2deg, as the following image shows. |
Line 56: | Line 41: |
=== Efficiencies before 2007 === * [http://www.iram.es/IRAMES/telescope/telescopeSummary/telescope_summary.html Efficiencies of 3/2005], see also the [http://www.iram.fr/IRAMFR/ARN/aug05/node6.html IRAM Newsletter 8/05]. * [http://www.iram.es/IRAMES/telescope/telescopeSummary/beam_effis.html Plot of efficiencies against frequency, measured in 2000], * [http://www.iram.es/IRAMES/telescope/telescopeSummary/effi_history.html Compilation of efficiencies obtained in the past till 2001]. |
|
Line 58: | Line 48: |
Telescope efficiencies and beam widths
Efficiencies measured 8/07 (and 6/08)
Freq
HPBW
Feff
Beff
Aeff
S/TA*
Comments
GHz
arcsec
%
%
%
Jy/K
86
28.5
98
78
64
5.9
145
16.9
95
64
53
6.9
210
11.3
94
62
51
7.2
260
9.0
90
53
44
8.0
345
7.0
87
39
32
10.6
estimated
measurements were conducted by CT & JP and compiled by JP, 12.2.2009
- ABCD receivers
- Uranus and Mars, while small. Planetary brightness temperatures Tb from ASTRO/GILDAS:
- Mars: 215K constant with frequency
Uranus: 139K at 86GHz, 116K at 145GHz, 102K at 210GHz, 94.5K at 260GHz, 85.6K at 345GHz following Griffin & Orton 1993
Half power beam width HPBW. The HPBW can be well fitted by: HPBW/arcsec=2406/Freq/GHz or HPBW/rad=1.166 W/D, with the wavelength W and the telescope diameter D.
Forward efficiency Feff. The values for Feff were updated after the 12th of December 2000 when a new reflecting ring was put around the secondary mirror. Forward efficiencies are derived from skydips. Values in the table are from measurements in August 2007.
Main beam efficiency Beff. Beff is the ratio of main beam solid angle over the entire antenna pattern solid angle. It is best derived from a source which has a diameter comparable to the size of the main beam. It can be calculated from the peak antenna temperature TA*, the HPBW, the source diameter, and source brightness temperature Tb (see Eq. 18 of attachment:cali_rep.pdf). For a source which fills the main beam, Beff=TA* Feff/Jnu(Tb), where Jnu(Tb) is the Rayleigh Jeans brightness temperature at frequency nu. Here, we assumed a pure Gaussian beam, and derived Beff from Aeff using Beff=1.21Aeff (CHECK: Reference).
Aperture Efficiency Aeff. Aeff can be obtained via pointings on point-like celestial calibrators with a well known flux, like Uranus or Mars, when it is small. Aeff can be computed from 3.906 K TA* Feff / Ssou, where K is the correction factor that considers the coupling of the disk size of the planet to the HPBW, TA* is the peak antenna temperature, and Ssou is the intrinsic flux density of the planet. (see Eq.16 in attachment:cali_rep.pdf or attachment:spatial_response_framework_v1.8.pdf)
Point source sensitivity S/TA*. S/TA* is expressed as 3.906 Feff/Aeff in Jy/K (see Eq.17 in attachment:cali_rep.pdf)
Error beams. A part of the power pattern is distributed in three error beams (see the analysis of attachment:greve_1998.pdf). The size of the described Gaussians is unchanged, however the main beam efficiencies have been improved since 1998, lowering the strengths of the error beams. A new paper is in preparation. Astronomers should take the contribution of the error beam into account when converting antenna temperatures to brightness temperatures, especially when mapping extended sources.
Gain elevation curves
Gain elevation curves show the point source sensitivity or aperture efficiency of the telescope versus elevation. Fits to the observations of August 2007, indicate a maximum gain at 49.2deg, as the following image shows.
attachment:gain-el-aug07.png
Efficiencies before 2007
[http://www.iram.es/IRAMES/telescope/telescopeSummary/telescope_summary.html Efficiencies of 3/2005], see also the [http://www.iram.fr/IRAMFR/ARN/aug05/node6.html IRAM Newsletter 8/05].
[http://www.iram.es/IRAMES/telescope/telescopeSummary/beam_effis.html Plot of efficiencies against frequency, measured in 2000],
[http://www.iram.es/IRAMES/telescope/telescopeSummary/effi_history.html Compilation of efficiencies obtained in the past till 2001].
[#beginOfPage Back to top]
[http://www.iram.es/IRAMES/mainWiki/TelescopeSystemSummary Back to the IRAM 30m System Summary]