Differences between revisions 18 and 19
Revision 18 as of 2009-02-12 17:08:19
Size: 5204
Editor: visitor3
Comment:
Revision 19 as of 2009-02-12 17:08:50
Size: 5077
Editor: visitor3
Comment:
Deletions are marked like this. Additions are marked like this.
Line 3: Line 3:
 * Below you find the forward and beam efficiencies upto 280 GHz measured in March 2005 ([http://www.iram.fr/IRAMFR/ARN/aug05/node6.html IRAM Newsletter 8/05]). Values above 300 GHz are predictions based on the observations compiled in the IRAM Annual Report 2007 attachment:IRAM_2007.pdf ).  * Below you find the forward and beam efficiencies upto 280 GHz measured in March 2005 ([http://www.iram.fr/IRAMFR/ARN/aug05/node6.html IRAM Newsletter 8/05]). ).

Telescope efficiencies and beam widths

  • Below you find the forward and beam efficiencies upto 280 GHz measured in March 2005 ([http://www.iram.fr/IRAMFR/ARN/aug05/node6.html IRAM Newsletter 8/05]). ).

    freq

    HPBW

    Beff

    Aeff

    S/TA*

    Feff

    Comments

    (GHz)

    (arcsec)

    (%)

    (%)

    (Jy/K)

    (%)

    (1)

    (2)

    (3)

    (4)

    (5)

    (6)

    72 (extrapolated)

    34

    79

    6.0

    95

    77 (extrapolated)

    32

    79

    6.0

    95

    86

    29

    78

    6.0

    95

    110

    22

    75

    6.3

    95

    145

    17

    69

    6.7

    93

    170

    14.5

    65

    7.1

    93

    210

    12

    57

    7.9

    91

    235

    10.5

    52

    8.7

    91

    260

    9.5

    46

    9.5

    88

    279

    9

    42

    10.4

    88

  • The half power beam width, HPBW, can be well fitted by: HPBW/arcsec = 2460/freq/GHz.

  • Main beam efficiency Beff. The data can be well fit by a Ruze function Beff = 1.2 Aeff' exp[-(4pi R sigma/ lambda)^2] with sigma being the rms value of the surface errors of the main dish, R the reduction factor for a steep main reflector, Aeff' is the aperture efficieny of the perfect telescope and lambda the wavelength in mm. The data can be fitted by R*sigma = 0.07 and epsilon = 0.69.

New values measured in August 2007

  • Freq

    HPBW

    Feff

    Beff

    Aeff

    S/TA*

    Comments

    GHz

    arcsec

    %

    %

    %

    Jy/K

    86

    28.5

    98

    78

    64

    5.9

    145

    16.9

    95

    64

    53

    6.9

    210

    11.3

    94

    62

    51

    7.2

    260

    9.0

    90

    53

    44

    8.0

    345

    7.0

    87

    39

    32

    10.6

    estimated

  • Half power beam width HPBW. The HPBW can be well fitted by: HPBW/arcsec=2406/Freq/GHz or HPBW/rad=1.166 W/D, with the wavelength W and the telescope diameter D.

  • Forward efficiency Feff. The values for Feff were updated after the 12th of December 2000 when a new reflecting ring was put around the secondary mirror. Forward efficiencies are derived from skydips. Values in the table are from measurements in August 2007.

  • Main beam efficiency Beff. Beff is the ratio of main beam solid angle over the entire antenna pattern solid angle. It is best derived from a source which has a diameter comparable to the size of the main beam. It can be calculated from the peak antenna temperature TA*, the HPBW, the source diameter, and source brightness temperature Tb (see Eq. 18 of attachment:cali_rep.pdf). For a source which fills the main beam, Beff=TA* Feff/Jnu(Tb), where Jnu(Tb) is the Rayleigh Jeans brightness temperature at frequency nu. Here, we assumed a pure Gaussian beam, and derived Beff from Aeff using Beff=1.21Aeff (CHECK: Reference).

  • Aperture Efficiency Aeff. Aeff can be obtained via pointings on point-like celestial calibrators with a well known flux, like Uranus or Mars, when it is small. Aeff can be computed from 3.906 K TA* Feff / Ssou, where K is the correction factor that considers the coupling of the disk size of the planet to the HPBW, TA* is the peak antenna temperature, and Ssou is the intrinsic flux density of the planet. (see Eq.16 in attachment:cali_rep.pdf or attachment:spatial_response_framework_v1.8.pdf)

  • Point source sensitivity S/TA*. S/TA* is expressed as 3.906 Feff/Aeff in Jy/K (see Eq.17 in attachment:cali_rep.pdf)

  • Error beams. A part of the power pattern is distributed in three error beams (see the analysis of attachment:greve_1998.pdf). The size of the described Gaussians is unchanged, however the main beam efficiencies have been improved since 1998, lowering the strengths of the error beams. A new paper is in preparation. Astronomers should take the contribution of the error beam into account when converting antenna temperatures to brightness temperatures, especially when mapping extended sources.

  • Historic values: [http://www.iram.es/IRAMES/telescope/telescopeSummary/beam_effis.html Plot of efficiencies against frequency, measured in 2000], [http://www.iram.es/IRAMES/telescope/telescopeSummary/effi_history.html Compilation of efficiencies obtained in the past till 2001].

Gain elevation curves

Gain elevation curves show the point source sensitivity or aperture efficiency of the telescope versus elevation. The measurements of August 2007, indicate a maximum gain at 49.2deg, as the following image shows.

attachment:gain-el-aug07.png


[#beginOfPage Back to top]

[http://www.iram.es/IRAMES/mainWiki/TelescopeSystemSummary Back to the IRAM 30m System Summary]

Iram30mEfficiencies (last edited 2016-11-03 18:07:57 by CarstenKramer)