Differences between revisions 24 and 36 (spanning 12 versions)
Revision 24 as of 2010-04-07 13:49:18
Size: 4715
Editor: lt-ck
Comment:
Revision 36 as of 2010-04-08 09:33:06
Size: 6757
Editor: GismoTeam
Comment:
Deletions are marked like this. Additions are marked like this.
Line 20: Line 20:
Line 23: Line 22:
Participants presence dates: [[attachment:Schedule_GISMO_visitors_April2010.pdf]]
Line 34: Line 34:
Compilation of the lists of sources that will possibly be observed (include few references to past runs): [[attachment:GISMOtestrun3_sources.pdf]].
Comments from Johannes about the proposed science grade sources: [[attachment:IRAM_Proposed_Sources_Comments.pdf]]

=== GISMO upgrades compared to previous runs ===

 * 2 motorized neutral density filters allowing to compensate the restrained dynamic range of GISMO by reducing the optical transmission in case of poor weather conditions, their transmissions are 65% and 40% respectively.
 * A controllable shutter and a LED coupled to detectors through a fiber allowing to make optical internal calibration
 * Automated observing procedures usable via a dedicated GUI such as detector tunning, sky dips, I-V measurements for total power measurements
 * A reduction package (Crush) allowing near-to-real-time data processing
 * An observer's manual of the GISMO operating software: [[attachment:GISMO_Software_Operational_Manual.pdf]]
Line 39: Line 49:
Arrival of Elmer & Stephen. Mount GISMO in the 30m workshop. The pictures below show several elements of the optical stage of GISMO: the 4K motors controling the neutral density filters (NDF), the neutral density filters in motion, the baffle with the NDF motors and the 3He sorption cooler, the connector box, and a general view of GISMO mounted. Arrival of Elmer & Stephen. Mount GISMO in the 30m workshop. The pictures below show several elements of the optical stage of GISMO: the 4K motors controlling the neutral density filters, the neutral density filters in motion, the baffle with the NDF motors and the 3He sorption cooler, and a general view of GISMO mounted.
Line 41: Line 51:
 ||{{attachment:GISMO_4K_NDfilters_motors.jpg}} {{attachment:GISMO_NDfilter_1_moves.jpg}} {{attachment:GISMO_NDfilter_2_moves.jpg}} {{attachment:GISMO_baffle_3He_cooler.jpg}} {{attachment:GISMO_mounted.jpg}}||
Line 42: Line 53:
Start cooling down on the 05.04.
Line 43: Line 55:
==== 06.04. & 07.04. ====
Line 44: Line 57:
==== 06.04. ==== Arrival of Johannes, Dale, Attila, and Samuel. GISMO is cold. Turn on the instrument, BIAS the SQUIDs, monitor the TESs responses, take IV curves: all 4 quadrants are working, about ~20 non-responsive pixels (mostly due to SQUID issues in the MUX). LED illumination not visible in the real time data, but appears finely in reduced curves. Problems of strange wiggles in the IV curves.
Install the GISMO frame in the cabin, but keep everything else (GISMO & electronics) in the workshop.
Find next morning that the problem with the IV curves was surely due to CPU overheating. A new power supply (with large fan) was installed and an external heat source (another computer) was removed. Subsequently things looks fine, frequency plots show 1/f^2 noise certainly due to thermal oscillations.
Line 46: Line 61:
Arrival of Johannes, Dale, Attila, Samuel. GISMO is already cold. Turn on the instrument, BIAS the SQUIDs, monitor the TESs responses, take IV curves: all 4 quadrants are working, few dead pixels (due to the MUX). Problem with the internal LED. Instal the GISMO frame in th cabin, but keep everything else (GISMO & electronics) in the workshop.
Line 62: Line 76:
   * [[attachment:Report_on_GISMO_Run2_Rev3.pdf]]
   * [[attachment:Atmospheric_Emission_Noise_at_Pico_Veleta.pdf]]
   * [[attachment:GISMO_run2_reply_to_J_Staguhn.pdf]]
   * [[attachment:GISMO_sensitivity_reply_to_D_Benford.pdf]]
   * [[attachment:Some_GISMO_reduced_images.pdf]]
   * [[http://www.submm.caltech.edu/~sharc/crush/index.htm|Crush]]

----

== 1st GISMO Test run, November 2007 ==
Line 68: Line 93:
   * [[http://www.submm.caltech.edu/~sharc/crush/index.htm|Crush]]

----

== 1st GISMO Test run, November 2007 ==

GISMO - The Goddard-IRAM Superconducting 2 Millimeter Observer

This page is maintained by CK, SL, and the GISMO team

3rd GISMO test run, April 2010

Staffing of the test run

  • GSFC: J. Staguhn, D. Fixsen, A. Kovacs, S. Maher, E. Sharp, D. Benford
  • IRAM: S. Leclercq, A. Sievers, G. Quintana-Lacaci, R. Zylka

Test run schedule: 31.03. - 16.04.2010

IRAM 30m schedule page: Schedule T16-09 in 30m schedule = GISMO has telescope time

Participants presence dates: Schedule_GISMO_visitors_April2010.pdf

#

Dates

Main Task

Details

Lead (GSFC/IRAM)

Support

31.03. Wednesday

Arrival of ES, first GISMO visitor, in Granada

01.04.-05.04.

Mount upgrades, close and cool down in the 30m workshop

Arrival of SM

06.04. Tuesday

Turn on GISMO, and 1st tests in the 30m workshop

Arrival of JS, DF, AK, SL, AS.

Johannes / Samuel

Albrecht (AoD)

07.04.-08.04.

Tests in the 30m workshop

Bias, Tuning, IV curves, internal LED, Computer...

Johannes / Samuel

Albrecht (AoD)

09.04. Friday

Installation in the cabin, cool down, alignment, background noise

Arrival of RZ

Johannes / Samuel

Albrecht & Guillermo (AoD)

10.04.-12.04.

Calibration on sky (alignment, pointing, focus, dips), observations T16-09

12.04.: Arrival of DB, departure of AS, SL, RZ

Johannes / Samuel

Guillermo (AoD)

13.04.-15.04

Observations T16-09

Johannes

Guillermo (AoD)

16.04. Friday

Dismounting

Departure of everybody

Johannes

Guillermo (AoD)

Compilation of the lists of sources that will possibly be observed (include few references to past runs): GISMOtestrun3_sources.pdf. Comments from Johannes about the proposed science grade sources: IRAM_Proposed_Sources_Comments.pdf

GISMO upgrades compared to previous runs

  • 2 motorized neutral density filters allowing to compensate the restrained dynamic range of GISMO by reducing the optical transmission in case of poor weather conditions, their transmissions are 65% and 40% respectively.
  • A controllable shutter and a LED coupled to detectors through a fiber allowing to make optical internal calibration
  • Automated observing procedures usable via a dedicated GUI such as detector tunning, sky dips, I-V measurements for total power measurements
  • A reduction package (Crush) allowing near-to-real-time data processing
  • An observer's manual of the GISMO operating software: GISMO_Software_Operational_Manual.pdf

Daily reports

31.03. - 05.04.

Arrival of Elmer & Stephen. Mount GISMO in the 30m workshop. The pictures below show several elements of the optical stage of GISMO: the 4K motors controlling the neutral density filters, the neutral density filters in motion, the baffle with the NDF motors and the 3He sorption cooler, and a general view of GISMO mounted.

  • GISMO_4K_NDfilters_motors.jpg GISMO_NDfilter_1_moves.jpg GISMO_NDfilter_2_moves.jpg GISMO_baffle_3He_cooler.jpg GISMO_mounted.jpg

Start cooling down on the 05.04.

06.04. & 07.04.

Arrival of Johannes, Dale, Attila, and Samuel. GISMO is cold. Turn on the instrument, BIAS the SQUIDs, monitor the TESs responses, take IV curves: all 4 quadrants are working, about ~20 non-responsive pixels (mostly due to SQUID issues in the MUX). LED illumination not visible in the real time data, but appears finely in reduced curves. Problems of strange wiggles in the IV curves. Install the GISMO frame in the cabin, but keep everything else (GISMO & electronics) in the workshop. Find next morning that the problem with the IV curves was surely due to CPU overheating. A new power supply (with large fan) was installed and an external heat source (another computer) was removed. Subsequently things looks fine, frequency plots show 1/f^2 noise certainly due to thermal oscillations.


2nd GISMO Test run, October 2008

In October 2008, the GISMO team Johannes Staguhn, Stephen Maher, Elmer Sharp, Dale Fixsen, and Dominic Benford spent two weeks at the 30m observatory to first install their GISMO bolometer in the lab and then in the receiver cabin to test its performance on the sky. GISMO consists of 8x16 pixels with transition edge sensors (TES). The super conducting TES are read out by SQUID multiplexers. The nominal bandwidth is 125-175GHz, pixels are spaced by 14", the telescope HPBW is 17" at 2mm. Data are taken while the telescope is performing Lissajous scan patterns, without switching the secondary, to increase the mapping efficiency. An automated pipeline merges the GISMO data with the telescope data streams to create FITS files, being triggered by the IRAM messaging system. Data are then further reduced using the Goddard data reduction package.

The 2mm spectral range provides a unique terrestrial window enabling ground-based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. Preliminary results from this second observing run at the 30m telescope look very promising.

(CK, 28-Oct-2008)

gismo-team.png
The GISMO team in the control room at the 30m telescope, after one week of 24 hours observing time. From left to right: Stephen Maher, Elmer Sharp, Johannes Staguhn, Dale Fixsen, Dominic Benford (Photo by A.Sievers on October, 27, 2008)


1st GISMO Test run, November 2007

GoddardIramSuperconductingTwoMillimeterCamera (last edited 2014-03-31 13:30:45 by gra-lx17)