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ABSTRACT

There is now enough observational information available to show that the interstellar magnetic field
in the general neighborhood of the Sun is, on the average, parallel to the plane of the Galaxy, with an
average strength somewhere between 10~° and 10™® gauss. This paper points out certain dynamical re-
quirements for the existence of such a field. The paper is based on the assumption that the intergalactic
medium, whatever it may be, exerts pressures on the Galaxy that are small compared to 1072 dyne/cm?.
It can then be shown that the galactic, or interstellar, magnetic field must be confined to the Galaxy by
the weight of the gas threaded by the field and distributed throughout the disk of the Galaxy. It is then
shown that the interstellar gas-field system is subject to a universal Rayleigh-Taylor instability of such
a nature that the interstellar gas tends to concentrate into pockets suspended in the field. The cause of
the instability may be thought of as a hydromagnetic self-attraction in the interstellar gas, which may
be ten times larger than the gravitational self-attraction of the gas. It is this hydromagnetic self-attrac-
tion which produces the observed tendency of the interstellar gas to be confined in discrete clouds.

The calculations and arguments do not restrict the over-all topology or the strength of the galactic
field, which apparently must still be determined from observation.

I. INTRODUCTION

The strength and topology of the galactic magnetic field is a central problem in the
origin of cosmic rays, galactic non-thermal radio emission, and the dynamics of the
arms of the Galaxy (see Wentzel 1963; Woltjer 1963, 1965; Parker 1966a). The early
optical polarization measurements of Hiltner (1949, 1951, 1956; Hall 1949) indicate a
large-scale average field parallel to the plane of the Galaxy (Davis and Greenstein 1951),
but uncertainty in the composition of the interstellar dust grains responsible for the
polarization prevents a quantitative estimate of the field strength from these observa-
tions (Greenberg 1964). Both the radio observations (Morris and Berge 1964) and the
polarization of starlight (Smith 1956; Behr 1959) indicate that the local lines of force
lie parallel to the direction of galactic longitude I = 70° + 20°, which agrees with the
direction of the spiral arm determined from the distribution of interstellar gas and O
associations (Weaver 1953; van de Hulst, Muller, and Oort 1954; Westerhout 1957).
Radio observations now seem to place an upper limit of about 5 X 107 gauss on the
large-scale average field strength in the disk of the Galaxy. Morris and Berge (1964)
point out that the Faraday rotation indicates a reversal of the field across the plane of
the Galaxy. Thus, taken together, the observations seriously limit the ideas concerning
the general nature of the galactic magnetic field. But so far, theory and observation,
either separately or together, are unable to give a unique picture of the general galactic
(interstellar) field.

It is the purpose of the present paper to point out some theoretical facts that further
limit the possible magnetic configurations in the Galaxy. In particular the considerations
give an upper limit on the field strength and a unique dynamical structure for the inter-
stellar gas clouds in the galactic magnetic field.

The theoretical facts on which the arguments are based are of an elementary nature,
but sometimes a rather tedious calculation is required to establish the individual fact.
Hence, in order that the main thread of the argument not be repeatedly interrupted,
many of the calculations are placed in the appendices with only a reference to the results
of the calculation in the text.

* This work was supported by the National Aeronautics and Space Administration under grant NASA-
NsG-96-60.
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II. EQUILIBRIUM OF FORCE-FREE FIELDS

It is assumed that, apart from the general rotation of the Galaxy, the galactic mag-
netic field (¢) is in a quam-statmnzuy equilibrium state, (b) is limited to the Galaxy
and the galactic halo,! and (¢) €XPETIences no swmhcant inward pressure from inter-
galactic space. With these assumptions as a stdltlng point, the first deduction is that
the galactic magnetic field must be confined to the Galaxy by the weight of the gas
enmeshed in the field (Biermann and Davis 1960).

It is a simple matter to prove the well-known fact that a magnetic field can be con-
fined only by the weight of the gas through which it penetrates. The appropriate virial
equations are worked out in Appendix 1.2 In the classical virial equation the gravitational
potential energy must overcome the expansive effects of the kinetic energy 27" if a sta-
tionary equilibrium is to be achieved. Adding a magnetic field means that the gravita-
tional potential energy must overcome the expansive effects of 27 plus the total
magnetic energy [dV B?/8w. Magnetic fields are never self-contained. Their presence in-
creases the tendency for the system to expand, and the expansion effect must be over-
come by the weight of the gas distributed along the lines of force. This is all well known
(Biermann and Davis 1960).

It is not so widely realized, apparently, that gas clouds from which the magnetic field
is excluded do not contribute to confining the galactic field. The physical reason is
simply that the galactic field is free to flow around the field-free gas clouds and escape
from the Galaxy if not confined by other forces. The formal proof is given in Appendix I.
Hence the only means for containing the magnetic field of the Galaxy is the weight of the
gas penetrated by the field.

The theoretical fact that a magnetic field can be confined to an isolated star system
only by the weight of gas threaded by the field permits two distinct possibilities for the
galactic magnetic field. The first possibility is that the galactic field in the disk of the
Galaxy, where we observe it, is held down pretty much throughout the disk by the
weight of the gas there. The second possibility is that the field in the disk is not held
down throughout the disk but is confined to the Galaxy by gas in the galactic nucleus.
To take the second case first, the field would then be largely force-free throughout the
disk of the Galaxy, a possibility that has been considered by a number of authors. In
this case, every magnetic line of force must be tied to the galactic nucleus in order to
be confined to the Galaxy.? From purely geometrical considerations it follows that the
field density must increase at least as fast as 1/#? between here and the center of the
Galaxy. Indeed, the formal calculation of force-free fields (Liist and Schliiter 1954;
Chandrasekhar 1956) shows that a localized field confined at the origin must increase
toward the origin at least as fast as 1/7%. Hence a field of 5 X 1076 gauss at a distance
of 10 kpc from the galactic nucleus becomes 5 X 10~3 gauss at a distance of 1 kpc. So
strong a field would dominate all interstellar gas motions within 5 kpc of the center of
the Galaxy, preventing differential rotation of the gas. The polarization effects and
synchrotron radiation from the field toward the center of the Galaxy would be enormous.
It is our impression, therefore, that the possibility can be ruled out on the basis of
observations,

! Sciama (1964) has suggested that the galactic field extends throughout the Local Group. We are
skeptical of the idea for the reasons given elsewhere (Parker 1966¢), but, as a matter of fact, the con-
clusions of the present paper would not be altered by Sciama’s field conﬁgurahon The 1mportant point
is that the field in intergalactic space is assumed to be small compared to the field in interstellar space in
both cases.

2 The virial equation does not take the usual form 27 4~ /dV B%/8x - ® = 0 (Chandrasekhar and
Fermi 1953) because the gravitational potential energy ® is not entirely the result of self-gravitation.

2 It is not possible to confine lines of force that fail to pass through the nucleus of the Galaxy by linking
them through lines that do thread through the nucleus.
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Another force-free configuration that has been considered is that the galactic mag-
netic field is in the form of force-free twisted ropes of magnetic flux extending along the
galactic arm. Such a configuration in no way avoids the general virial condition that
the field must be confined by the weight of gases, but it is a different situation from
that in which all lines are tied straight into the galactic nucleus. The case of a twisted
rope is worked out in Appendix II, where it is shown that, unless the external (inter-
galactic) pressure is equal to half the average internal magnetic pressure, the twisted
rope will buckle because of compressive stresses along its length. The system would
be so unstable as to transform itself into some other configuration within 10® years.t
The buckling might be stabilized by enough internal gas, of course, but the gas is then
confining the field, which is not the possibility under discussion.

Altogether, then, there is no steady magnelic configuration consistent with present obser-
vations that is force-free throughout the disk of the Galaxy and is confined only in the galactic
nucleus. The alternative is to assume that the galactic field in the disk is contained more
or less throughout the disk by the weight of the interstellar gas in the disk. The next
section works out some of the consequences of this.

III, EQUILIBRIUM OF A FIELD CONFINED TO THE DISK

If we conclude that the galactic field must be contained by the weight of the inter-
stellar gas throughout the disk, the immediate question is what this containment re-
quires in the way of an average interstellar-gas density. Either the tensor virial equations
or the hydrostatic pressure equation may be used to treat the problem. To see what is
needed, consider the simple case suggested by the polarization observations, that the
field in the disk is largely parallel to the disk. Then if the field density is the function
B(z) of distance measured perpendicular to the plane of the disk, the condition for quasi-
static support of the interstellar gas density p(z) against the gravitational acceleration
perpendicular to the plane of the Galaxy is

2
L (p+r+5-)=—r)8), )

where p(2) is the gas pressure and P(z) is the cosmic-ray pressure. In the simplest case,
suppose that the three pressures are all proportional, with

BY/8w = ap, P = gp, @

where a and §8 are dimensionless constants. The possible variations of a and 8 with z

would not alter the conclusions. Then writing p = pu?, where # is the fofal rms random
gas velocity in the z-direction, it is readily shown that

p(z) =p(0)eXp|:—%2(1+1a+B) jfzdzg(z)} ©)

if  is taken to be independent of z in the first approximation.? The density falls by a
factor of e in one scale height A, where

/"Adzg(z)=u‘~"(1—{—a—i—ﬁ). (4)
0

4 The calculations discussed in §§ IV and V show that it is not possible to stabilize the arm with a
dense stiing of stars along the arm.

8 The assumption that « is independent of 2 is equivalent to the assumption that the individual gas-
cloud velocities have a Gaussian distribution.
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Using the mean-value theorem, we write [dz g(z) as A{g)a, where {(g)a is the mean
value of g(z) in (0,A). Then
_#W(l+a+8)

<g>A

This is the basic equilibrium condition for the simple interstellar gas-field system com-
posed of lines of force more or less parallel to the disk of the Galaxy.

The scale height of the interstellar gas is presently estimated to be 100 pc (Schmidt
1956; van de Hulst 1958; Rougoor 1964). The scale for the distribution of late-type stars,
such as K giants is A = 300 pc (Oort 1959; Hill 1960), and from their analysis,
{gha == 1.3 X 107° cm/sec?. The rms velocity of the radio-observed gas clouds in the
direction perpendicular to the plane of the Galaxy is 5 km/sec (see discussion in Gould,
Gold, and Salpeter 1963).5 It follows that 1 -+ « + 8 = 1.5, although the observational
uncertainties are considerable. One might expect that the value 1.5 is an upper limit
on 1+ a + B, which gives, then, « + 8 < 0.5.

An upper limit on « 4 B puts a lower limit on the interstellar gas density because,
from equation (2),

A (3)

_P+B /87

L ©)

P la+8)ur

The cosmic-ray pressure is observed to be about 0.5 X 1072 dyne/cm? (Parker 19665).
Suppose B is about 5 X 1078 gauss. Then P 4 B?/8r = 1.5 X 1072 dyne/cm? It
follows that the lower limit on p is 12 X 102¢ gm/cm?, or about 7 hydrogen atoms/cm?,
Even with B = 1 X 107¢ gauss, the lower limit on the density is 3 atoms/cm?, Alto-
gether, then, the equilibrium considerations suggest that the interstellar gas density is
in excess of the observed atomic hydrogen density of one atom/cm?.” The calculations
also make it appear unlikely that the interstellar magnetic-field strength can be much
in excess of 5 X 1078 gauss without enormous interstellar gas densities, of 10 atoms/cm?
or more, to contain the field.

Now the question that arises is whether the high interstellar gas density can be
avoided by some other magnetic configuration or cloud motion. Some authors (Biermann
and Davis 1960) have discussed the confinement of the galactic field by the interstellar
gas using the scalar virial equation and have achieved an average equilibrium over three
dimensions with low gas densities by assuming that the gas rotates around the center
of the Galaxy a little less rapidly (10-15 km/sec) than the stars. Their conjecture that
the gas lags behind the stars may well be correct, but it does not affect the present
calculation of equilibrium in the one direction perpendicular to the disk of the Galaxy.
Differential motions in the plane of the Galaxy do not enter into the equilibrium
equation (1).

Twisting the interstellar field into ropes would put some of the tension B?/4r in the
field to work confining the field pressure B?/8r, thereby assisting the weight of the gas
in confining the field. But there is a limit to how much this can do. As shown in Appendix
II, only a portion of the magnetic pressure can be confined in this way. Even when
B?*/8r 1s dropped completely, the lower limit on the density was estimated at 3 atoms/
cm?,

Altogether, then, the requirement of equilibrium in the direction perpendicular to the
disk of the Galaxy would appear to demand an interstellar gas density in excess of one

8 The high-velocity clouds at high galactic latitude (Miinch and Zirin 1961; Muller, Berkhuijsen,
Brown, and Tinbergen 1963) are not included in this number. Doing so would increase the large gas den-
sity calculated from eq. (6).

7Tt has been suggested to us by several people that perhaps the weight of a galactic halo of 102
atom/cm? at 10 ° K compresses the gas in the disk of the Galaxy to the observed thickness of 2A = 200
pc. This is an interesting manifestation of a galactic halo and should be looked into.
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atom/cm?. Other indications and consequences of a high interstellar density have been
explored in the published literature from points of view which are different from the
approach used here. It is interesting to note them briefly before passing on to the next
section and the real point of this paper.

Gould et al. (1963) point out that the gravitational acceleration perpendicular to the
plane of the Galaxy can be deduced from the observed scale height and velocity of the
K giants. The value of g so obtained requires a larger mass in the disk of the Galaxy
than the stars plus 1 atom/cm?® They suggest that the additional mass is interstellar
gas with a density of 5 atoms/cm? 4 atoms/cm?® being molecular rather than atomic
hydrogen.

Recent work by Toomre (1966) and Julian and Toomre (1966) indicates that an
average interstellar density of 3 atoms/cm?® would make the galactic arms understand-
able in terms of gravitational forces alone (see also Lin and Shu 1964).

The question of the total interstellar gas density is of central importance in calculating
the rate at which cosmic rays are generated in the Galaxy (see discussion in Ginzburg
and Syrovatskii 1964; Parker 1966a). The calculated rate of generation varies directly
with the mean interstellar density and is of the order of 10%0-10% ergs/sec with 1 atom/
cm?, approaching the total energy output of all the novae and supernovae in the Galaxy.

It is to be hoped that the interstellar molecular hydrogen can soon be looked for. The
importance for further discussion of the galactic gas-field system is obvious. Fortunately
the qualitative arguments presented in this paper do not depend on the precise values of
either the gas or the field density.

IV. STABILITY OF A FIELD CONFINED TO THE DISK

The arguments presented up to this point have shown that the galactic magnetic
field in the disk must be contained by the weight of the gas in the disk. The polarization
of starlight suggests that the average field in the disk is parallel to the plane of the disk,
and a particularly simple example of such equilibrium was considered in the previous
section. The next question concerns the stability of such an equilibrium. The field con-
fined by the weight of the gas is quite different from the laboratory plasma confinement
with which we are familiar, where the field confines the gas. So it is necessary to look
into the matter rather carefully. We begin with the example employed in the previous
section, of a magnetic field of density B(z) in the horizontal y-direction. The gravitational
acceleration g is in the negative z-direction and the thermal gas density p in the field is
supported against gravity by the magnetic field, the thermal gas pressure, and the
cosmic-ray gas pressure, 1.e., the field and the cosmic rays are confined by the weight
of the gas.

Consider first the simple convective interchange of the magnetic lines of force, as
sketched in Figure 1. The available information suggests that with parallel magnetic
lines of force the system may be weakly unstable, If shearing is present, in which the
field is parallel to the plane of the Galaxy but the direction of the field rotates about a
vertical axis with increasing height above the plane, or if the field is in twisted ropes,
the interchange mode is probably stable. Shearing is a well-known laboratory procedure
to eliminate interchange instability in the magnetically confined plasma.

It is more interesting to consider the stability of the system against transverse waves
in the magnetic field. This calculation is made in Appendix III for an isothermal atmos-
phere with the equilibrium pressures of the thermal gas, the magnetic field, and the
cosmic-ray gas in the constant ratio 1:a: 8 (see eq. [2]). The atmosphere is in a constant
gravitational field g in the negative z-direction and self-gravitation is neglected. The
pressure and density perturbations of the thermal gas are related by the simple equation
of state 8p/p = vdp/p, where v is a constant. The calculations consider a perturbation
with a periodic variation exp iky along the large-scale magnetic field. A requirement

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1966ApJ...145..811P

T % II451 18TIP

BAD

rt

816 E. N. PARKER Vol. 145

that the perturbation vanish at the “base” of the atmosphere, say, at 2 = 0, and remain
finite at 2 = 4 « leads to instability whenever

a/2+B8+ (a+8)?
(14+3a/2+8)

The thermal gas by itself would, of course, be stable provided only that v > 1. The
horizontal magnetic field and the cosmic-ray gas both drive the system toward instabili-
ty, so that v must exceed 1 by the amount indicated in expression (7) if the thermal gas
is to maintain stability. The equilibrium conditions 7 atoms/cm? B = 5 X 107 gauss,
and P = 0.45 X 107 dyne/cm? give instability for any - less than 1.35; the conditions
3 atoms/cm?®, B < 2 X 107° gauss, and P = 0.45 X 107 dyne/cm?® give instability for
any v < 1.36.

Inelastic cloud collisions and radiative transfer in the interstellar medium are so
effective that for perturbations with periods of the order of 107-108 years, such as we

n

y—1<

z

Fi1e. 1.—Sketch of the convective interchange of parallel magnetic lines of force in the y-direction.
The circular velocity of the gas and field is indicated by the velocity symbol v.

are considering here, a density increase in the thermal gas produces little change in the
temperature. If there is any effect at all, it is probably for the temperature to decline
with increasing density (v < 1). So put ¥ o~ 1 as a conservative estimate (see discussion
in Parker 1953). The thermal gas is then only marginally stable by itself. T4e magnetic
field and the cosmic-ray gas make the total gas-field system unstable.

The calculations show that the growth time is typically 3 X 107 years. This time is
short compared to the life of the Galaxy, the time of formation of the galactic arms,
and the time in which the thermal gas condenses into stars. So the instability appears
to be dynamically important for the state of the interstellar gas-field system. Let us
inquire into the nature of the instability. Neither the magnetic field nor the cosmic-ray
gas is subject to gravity, so in equilibrium they must be confined by the weight of the
thermal gas. That is to say, some of the weight of the thermal gas is supported by the
magnetic field and cosmic-ray pressure. So if a perturbation is introduced involving
vertical displacement of some portion of the horizontal equilibrium field, the thermal gas
tends to slide downward along the magnetic lines of force away from the raised portion
of the field into the lower regions along the lines of force. This diminishes the overburden
on the raised portion, permitting the field and cosmic-ray gas to expand upward there,
causing further slipping of the thermal gas downward along the lines of force, etc. At

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1966ApJ...145..811P

J. D ITA5. [P

BAD

rt

No. 3, 1966 INTERSTELLAR GAS AND FIELD 817

the same time that the raised portions of the field are being unloaded, the burden on
the lower portions is being increased. Only if v is sufficiently greater than 1 will the
thermal gas resist the tendency to slide downward along the field and so give a stable
atmosphere. :

It is evident that the instability is distinct from the well-known Jeans’s gravitational
instability, which is the result of self-gravitation. The instability is also distinct from
the lack of equilibrium caused by unlimited cosmic-ray inflation of the fields at the sur-
face of the galactic disk (Parker 1965). The instability is related to the familiar Rayleigh-
Taylor instability in which a dense fluid supported from beneath by the pressure of a
light fluid tends to drip downward through the light fluid.

One may inquire if the instability may be avoided with some magnetic-field configura-
tion other than the simple horizontal field. Consider, for instance, a circular geometry,
representing a cross-section of the interstellar gas in a self-gravitating galactic arm.
Wrap the magnetic lines of force around the arm so that the tension in the field might
stabilize the configuration. The stability of the system is treated in Appendix V. The
calculations show that the system is as unstable as the horizontal field. A twisted rope
of magnetic field, involving lines of force both along and around the arm, fares no better.
The flat and circular geometries considered in the appendices by no means exhaust all
the possibilities, of course. For instance, the tidal forces exerted on any one galactic arm
by the rest of the Galaxy would distort a circular geometry into an elliptical one. Or
the field may be twisted into many small parallel ropes. Or the gravitational field may
be taken to be increasing with height. The simple case that g is proportional to z is out-
lined in Appendix IV. But nothing essentially new is added to the problem by such
complications. The basic point is that, if the cosmic rays and/or the lines of force of a
large-scale field along the galactic disk or arm are confined by the weight of the thermal
gas, then the gas always tends to drain downward along the magnetic lines of force into the
Lowest region along each line. The instability is unavoidable unless the thermal gas is
strongly stable by itself, The interstellar thermal gas is not significantly stable by itself
(v < 1), so the magnetic field and the cosmic-ray gas drive the interstellar gas-field
system unstable in periods of 107-108 years.

V. THE LONG-TERM STATE OF THE INTERSTELLAR GAS-FIELD SYSTEM

It has been demonstrated that a large-scale equilibrium interstellar magnetic field
(suggested by present magnetic observations) is intrinsically unstable in a short time,
of only 3 X 107 years. The instability must quickly destroy the equilibrium. The ques-
tion is, then, what is the dynamical state of the interstellar magnetic field now, after
10°-10%° years? The answer to this question follows from the nature of the instability.
(Some examples are worked out in detail in Appendix ITI1.) The instability is the result
of the thermal gas draining down along the magnetic lines of force into the low regions
along the field, thereby burdening down the low regions and releasing the field between
the low regions to expand upward. A sketch of the resulting field configuration along a
line of force is shown in Figure 2. The horizontal spacing of the gas pockets in the low
regions is of the general order of magnitude of the scale height of the system (see Appen-
dix IIT). It must be concluded from the calculations that, if there is a large-scale interstellar
Jield confined to the Galaxy, then the inlerstellar gas is presently suspended in the field in
discrele clouds with separations of the order of 10-10° pc.

It is interesting that the dynamical properties of a large-scale magnetic field should
lead to this conclusion, because the conclusion may help resolve a perplexing problem
concerning the maintenance of some of the less massive interstellar gas clouds. It is
observed (Adams 1949; Miinch and Unsold 1962) that the interstellar gas exists mainly
in widely separated discrete clouds (see the recent high-resolution observation of inter-
stellar absorption lines by Livingston and Lynds 1964). The usual explanation for the
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discrete character of the interstellar gas is self-gravitation of the individual clouds,® but
there is the problem that in many cases the cloud masses inferred from the observations
do not seem to be large enough to maintain the cloud in equilibrium by self-gravitation
alone (see Kahn and Dyson 1965). For instance, the self-gravitation of a spherical cloud
with a diameter of 20 pc and a density of 10 hydrogen atoms/cm? can hold the cloud
together only if the internal motions are 0.7 km/sec or less. A higher density of 100
atoms/cm?® can contain internal motions of only 2.2 km/sec. But even the thermal
velocities are this large, to say nothing of the 10-km/sec motions expected from collisions
between clouds and from the passage of hot luminous stars through the region. So there
is some question as to the means by which the apparent identity of the smaller, more
tenuous, interstellar gas clouds is maintained. The new point arising in the galactic field
configuration presented in this paper is that the self-gravitation of the individual gas
clouds is supplemented, in the configuration shown in Figure 2, by the gravitational
field of the Galaxy as a whole.

l Gravity

Thermal Gas

T1c 2.—Sketch of the local state of the lines of force of the interstellar magnetic field and interstellar
gas-cloud configuration resulting from the intrinsic instability of a large-scale field along the galactic
disk or arm when confined by the weight of the gas.

To illustrate the supplement to self-gravitation in a direct way, and to establish that
the supplement may be large in many cases, consider two parallel, widely separated,
infinitely long, slender cylinders of gas lying across the horizontal magnetic field By and
supported by the magnetic field in the large-scale gravitational field g. The entire region
is filled with a tenuous conducting plasma, so that the hydromagnetic equations are the
appropriate description of the system. To make the problem tractable, suppose that the
pressure of the tenuous plasma is negligible compared to the pressure and weight of the
cylinders of dense gas lying across the field. Theny X B = 0, with B = — vy, V¥ = (,
everywhere except in the dense cylinders. The field outside the cylinders has the same
configuration and stresses as though the space were a vacuum. The solution of this
hydromagnetic problem may be effected simply by noting that, if m is the mass per unit
length of each cylinder, then the current 7 induced in each cylinder by the weight on

the magnetic field is given by
IB,

[4

8 Alternatively it has been suggested (Savedoff and Spitzer 1950) that the region bétween clouds is
filled with hot (10¢° K) tenuous (0.1/cm3) hydrogen, whose pressure confines the neutral clouds.
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Since the fields outside the cylinders are the same as for two parallel currents 7 in a
vacuum, the fields carry the same stresses as in a vacuum. It is well known that two
parallel currents separated by a distance s in a vacuum attract each other with the force
21 2 m*g?
F="r-==T2

¢2s s B '

The stress in the fields between the two cylinders is the same, provided s is large com-
pared to the diameter of the cylinders, so F is the force of attraction between the two
cylinders of gas.? Note that this hydromagnetic force of attraction is proportional to the
square of the masses and inversely proportional to the distance s, just as the gravitational
force
_2Gm?

T

Fg

It follows that the ratio of the hydromagnetic force to the gravitation is

rF_ £
FG_GBO2’

which may be extremely large in regions of weak galactic magnetic field B, and strong
galactic gravitational field g. The simple example of two short segments of length ¢ sup-
ported by the field is easily worked out, showing how the situation is complicated by cur-
rents flowing along the magnetic lines of force, in addition to those across.

The gravitational acceleration perpendicular to the disk of the Galaxy is estimated
(see, e.g., Oort 1960; Hill 1960; Gould ef al. 1963) to be of the order of 3 X 107° cm/sec?
at a distance of 100 pc above the central plane of the disk of the Galaxy. A field of
B = 5 X 107% gauss then gives a ratio F/Fg = 5. It is evident from this example that
the effective attraction between two elements of gas may be enormously increased above
self-gravitation and may, therefore, be an important effect in confining the interstellar
gas to discrete clouds.

It is evident that the attraction should be included in calculations of Jeans’s instability
criterion, To a first approximation the effect may be represented by a suitable increase
in the effective gravitational constant G. Hence, for a given average gas density the
result is a smaller mass for the individual contracting cells of gas.

It should be noted that the attraction vanishes on the central plane of the disk of the
Galaxy because the component g of the gravitational field perpendicular to the plane
of the disk vanishes there. It follows, therefore, that there should be some tendency for
small tenuous gas clouds (which have little self-gravitation) to be defined more sharply
in regions removed from the central plane than in regions near the central plane. It
suggests, too, that there may be a tendency for stars of larger mass to be formed near
the central plane of the disk.

VI. DISCUSSION

The arguments of the preceding sections have passed rather directly to the conclu-
sions, leaving a number of important points untouched. This section is intended to go
back and pick up some of these points.

First of all, it should be noted that the calculations and conclusions presented in this
paper do not restrict the over-all magnetic configuration of the galactic magnetic field.
The calculations have to do only with the small-scale (10-10° pc) properties of the

® The interested reader may wish to carry through the exercise of computing F formally from the
hydromagnetic equations.
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galactic field. They apply to a twisted rope of magnetic flux along a galactic arm as well
as to a large-scale horizontal field in the disk, etc.

The arguments began with the idea of a large-scale field with a tendency to lie parallel
to the disk of the Galaxy, because the observed polarization of the light of distant stars
seems to require this. The question is, then, whether the final pendulant configuration
(Fig. 2) is consistent with this starting point of view. We suggest that it is. The space
average of the vertical component of the magnetic field is zero in a gas cloud and in the
intercloud region as well. The light path for the significantly reddened stars, in which
the polarization is observed, usually passes through more than one gas cloud (see again
Livingston and Lynds 1964). Presumably, therefore, the net direction of polarization of
the light of most reddened stars comes close to the over-all average field in the disk,
which the observations (Hiltner 1949, 1951, 1956) show (Davis and Greenstein 1951)
is close to the plane of the Galaxy, It must be remembered that the averaging is generally
believed to be sufficient to obscure even a possible over-all twisting of magnetic lines of
force along the galactic arm.

The velocities of the individual interstellar gas clouds relative to the local galactic
rotation are statistically isotropic so far as observations can tell. And, so far as observa-
tions can tell, the magnitude of the random velocities does not vary with height above
the plane of the Galaxy. The interstellar cloud system sketched in Figure 2 seems to fit
this picture fairly well. If the motion of each cloud can be considered a harmonic oscilla-
tion about some equilibrium position, then random excitation of the oscillator leads to
a statistically isotropic velocity no matter how weak the binding may be in one direction
and how strong in another.!'® Since the gas clouds are all tied into the same large-scale
magnetic-field system, it is not surprising if the degree of excitation is independent of
distance from the galactic plane.

VII. SUMMARY AND CONCLUSIONS

The main argument presented in this paper is based on two premises: (a) There exists
a large-scale magnetic field in the Galaxy; (b) the magnetic field, and the cosmic rays
trapped in it, are not confined to the Galaxy by extragalactic pressures. A large-scale
field of 1076-10° gauss is suggested by the observed polarization of starlight, by Faraday
rotation, and by the apparently steady nature of the cosmic-ray intensity. It was then
argued that the field and cosmic rays must be confined throughout the disk of the
Galaxy by the weight of the interstellar gas threaded by the field. But the effective vy
for slow changes of density of the interstellar gas is apparently not enough greater than
1 to provide stable confinement of the magnetic field and/or the cosmic rays. The calcu-
lations show that the result is an instability, in the form of a strong tendency for the
interstellar gas to clump together into discrete clouds. The clumping tendency can be
represented by a pseudo-self-gravitation of the interstellar gas which is larger by a factor
of the order of g?/GB? than the true self-gravitation. The enhanced clumping explains
the coherent nature of many of the interstellar clouds whose masses are otherwise too
small to hold them together. _

The success of the general dynamical picture in explaining the discrete nature of
many interstellar clouds suggests that the dynamical considerations presented here are
a major effect in determining the state of the interstellar gas and fields. The clumping
must be included in the treatment of star formation in interstellar gas clouds.

The author wishes to express his gratitude to Dr. Tan Lerche for stimulating discussion
of the dynamical properties of the interstellar medium.

10 The displacement amplitudes are not isotropic in an anisotropic oscillator.
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APPENDIX I
THE VIRIAL EQUATIONS FOR THE GAS-FIELD SYSTEM

The arguments presented in § IIT are based on the result, easily shown from the virial equa-
tions, that a galactic magnetic field can be confined to the Galaxy only by the weight of the
gas which it penetrates. \

Consider the virial equation for the interstellar gas and magnetic-field system. Let p represent
the gas density and B; the field. Let ¢ represent the total gravitational potential, due to stars
and gas together. Then (Chandrasekhar and Fermi 1953; Parker 1954)

a2l ;
an

99
Gxi

d¢
% —— ), @D
Fx Fye (

i

= 4T+ [ aSe(widla+ wMa) =2 [ aVMy— [ aVp (s

where [;; is the moment-of-inertia tensor and T'; is the kinetic tensor:

Iq{j:fdvpxixj, T,‘izé-dep %,v—tz%' 1.2)

It will be assumed that there are no external forces exerted on the gas-field system, so the surface
integral vanishes when calculated over a sufficiently distant external inclosing surface.

If the gravitational potential ¢ were the result only of the gas density p (V2 = 47Gp), it
would be possible to write the last term on the right-hand side of expression (I.1) in terms of
the total gravitational potential ® = [dV p¢ in the usual way. But since other matter, such as
the stars, contributes to ¢, this is not possible. The precise value of the integral depends now
on the spatial form of ¢. To pick a simple example, suppose that the gas-field system is in a
spherically symmetric parabolic potential well,

7'2
¢(r)=g%, 1.3)

where g is the inward gravitational acceleration at the characteristic radial distance » = a.
Then it follows that

d¢ I\ _ 2g f 2g
Xi—— ol Ealnse Xix; = —> 14, L.
dep x 8xj+x’ Fy p dVpxx; o I;; (1.4)
and the trace of this is
287 — 99 _ -
;I”—depZm axi»—lldepgb_@. @5
Thus, if there are no forces on the external surface of the system, equation (I.1) reduces to
d*ly; 2
-&F%f Tsj=4T; 2 f dVM;;. (L.6)

Contracting on the indices gives
29 = 2T + [dVB*/8r an

for equilibrium, where T is the total kinetic energy of the internal motions and [dV B2/8r is
recognizable as the total magnetic energy of the system. The gravitational potential energy ®
is measured above the potential at the origin, rather than below the potential at infinity, Equa-
tion (1.7) illustrates the fact that the kinetic energy and the magnetic energy must be contained

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1966ApJ...145..811P

J. D ITA5. [P

BAD

rt

822 E. N. PARKER Vol. 145

by a comparable amount of gravitational potential energy. A magnetic field is not self-contain-
ing. It must be confined by the weight of the gas which it threads.

There has been some discussion of the possibility of interstellar gas clouds from which the
galactic magnetic field is excluded for one reason or another (see Woltjer 1963). The diamagnetic
clouds lie outside the gas-field system with which we are concerned, but they exert forces on the
gas-field system at their surfaces. It is necessary to work out the surface integrals in the contract-
ed form in (L.1), yielding [dS;x:M;; = [dS%;B*/8m from the fact that dS;B; = 0 for clouds
which exclude the external field. To make the problem tractable, suppose that the diagmagnetic
clouds are spherical with radius R, widely separated, and small compared to the scale L of the
external field. Consider a cloud with its center at x; = X;. Let the field in that neighborhood
be ¢;B(X;) belore the cloud was introduced, where ¢; is the unit vector. Following the introduc-
tion of the cloud, the field in that neighborhood becomes — dy/dx; with

‘P=B(X¢)[<I+£;> Ege@--}-O(IZ{)], (1.8)

where §; represents rectangular coordinates measured from the center of the sphere and 7 is the
radial distance (£;£,)"2 from the center. It is readily shown that the work W required to inflate
the sphere to a radius R against the pressure exerted on it by the external field is

4rRN B (X )
_g( 3) xR, ©.9)

The external field B(X}) is not uniform, of course, so there will be a net buoyant force (Parker
1955, 1957) exerted on the cloud. The force F; is

F;= Q_VZ (1.10)
dx;’

where the differentiation is carried out with R fixed.
To evaluate the surface integral write x; = X; + &;. Then, for each diamagnetic cloud,

dea,, des—-l—fdssi—

The first integral on the right-hand side is just the negative of the total force exerted on the
cloud by the external magnetic field. The second integral is easily shown to be equal to 3W,
since dS;&; = 2wR? sin 046 and B? = 9B*(X;) sin? §/4, where cos § = ¢;£;/7. Hence

2
deixi£-= — X F:+3W=X; aW—I—3W—~——(WX i) T.11)
8 0X;

It follows that the scalar virial equation for the gas-field system external to a number of
diagmagnetic spheres is

2w=27+ [av &+ 3 -5 WX, a2

in place of equation (L.7). The sum is over all the spheres. The sum can be greatly simplified if
we consider a very large number of small diamagnetic spheres distributed over the cloud. If
T(x;) is the number of clouds per unit volume, then T can be replaced by {dV T and

PIF LR eI deT———(Wx)
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The total contribution of the diamagnetic spheres to the right-hand side of equation (1.12) is
thus

S= deT[—~—(Wx ) +W]

where the first term in the integrand represents the contribution of the surface integral and the
second term represents the increased magnetic energy. The integration is over the entire volume
occupied by the gas-field system and it is assumed, therefore, that the diamagnetic cloud density
T vanishes at the surface of the system. Integrating by parts, then, leads to

x; o7
S—deTW(l 2L

Both T and W are positive or zero everywhere throughout the volume. So the sign of .S is deter-
mined by the quantity in parentheses. The gravitational field of the Galaxy causes T to decline
outward from the center of the system so that x;07/dx; is generally negative, except for local
fluctuations. But the quantity in parentheses is always positive provided that (x,/T)07T/dx; <
-+ 1. Hence we conclude that S > 0 for the real situation encountered in the Galaxy. The con-
tribution of diamagnetic gas clouds is to increase the tendency for the system to expand. Gas
clouds from which the magnetic field is excluded do not confine the magnetic field to the Galaxy.

APPENDIX II
FORCES IN A TWISTED ROPE OF MAGNETIC FIELD

A few remarks are required concerning the stresses in a force-free twisted rope of flux, some-
times considered as a possible configuration for the galactic-arm field. The magnetic field in an
axially symmetric force-free tube of flux can be expressed (Schliiter, Trefftz, and Liist 1953) in
terms of a generating function F(®), where @ is distance measured from the axis of the tube,
along which distance is measured by 2z and around which the azimuthal angle is ¢. The compo-
nents of the magnetic field can always be written as

dF dF
2 — 1Y% 2 — wr
By zwdw’ Bi:=F(w)+1% wdw

so that the arbitrary generating function is just the square of the magnitude of the field. The
total tension Q in the rope, from @ = O out to @ = g, is

“ Bzz—‘BZ @

A CT )

after integration by parts, The tube of force can be stable only if O > 0, for if Q < 0 the tube is
under compression and will buckle. Suppose that the rope terminates at some fnite radius
@ = @. There must then be an external pressure equal to B%(a)/8xn exerted on the field at @ = q,
of course. Then it may be seen from (I1.1) that Q(e) > 0 for stability requires that the external
pressure must equal or exceed one-half the average magnetic energy density within @ = a. So
any such force-free tube must be contained by an external pressure comparable to B*/87 within
the tube. This is, of course, nothing more than the virial condition again, stating that a mag-
netic field will expand to infinity unless confined by comparable inward forces.

ar.1)
=27
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APPENDIX III
STABILITY AGAINST TRANSVERSE WAVES

Consider the stablhty of a composite atmosphere of thermal gas, magnetic field e,B(z), and
cosmic-ray gas against transverse waves propagating along the magnetic field. For this first
calculation suppose that the gravitational acceleration g and the thermal gas temperature T
are independent of x,y,2. It will be found convenient to introduce the thermal velocity
u = (RT/M)V2, Then the pressure and density are related by p(z) = #2p(2). It will be assumed
that the cosmic-ray gas maintains its statistical isotropy while flowing along the magnetic lines
of force in the slow (107 years) distortions of the field to be considered here. Suppose that the
magnetic and cosmic-ray pressures are confined by the weight of the thermal gas and are simply
proportional to the thermal gas pressure at each point, so that equation (2) in the text may be
applied. Hydrostatic equilibrium leads to

Ldp_ g _ldp_1dP_24B_ 1

P dz T w(1+a+B8) pdz Pdz Bds L’

where L is the scale height of the atmosphere. Introduce a perturbation exp twf with wave vector
parallel to the yz-plane! involving the velocity components v, and 7.. Express the magnetic per-
turbation associated with #, and v. as the curl of the vector potential e,64 (y,2), where e, repre-
sents a unit vector in the x-direction. The hydromagnetic equation for §4 becomes

36 4
04— . . III.
37 2.8(z) (1r.2)

If the thermal gas density and pressure perturbations are ép and 6p, and if the cosmic-ray gas
pressure perturbation is 6P, then the linearized equations of motion!? are

dv, _ _a8p 0P 1 dBas4

_ Ao T dipididiuin} (I1.3
at ay 3y 4w dz ay '’ )
dv. __d6p 48P B _, 1 dB a6 4 .
—k - 1I.
E T R "R A i S i ma
ddp (6 Uy é‘_zj>
Y -+ 0, {I11.5)
0_5_12+%,d_12+7 (azeraz:)_ (It1.6)
at b4
assuming that the pressure variation 6p in a given element of gas varies as
)
—_?_ =9,
V4 p

where 7y is a constant.

1 This excludes the interchange mode, which involves a wave vector principally in the xy-plane.

12 These hydrodynamic equations neglect particle-wave resonances (Tidman 1966) which are small in
the present case because the wavelengths are of the order of 1020 cm, traversed in 3 X 109 sec by rela-
tivistic particles. Resonance with the cyclotron motion of the cosmic-ray protons around a galactic field
of 5 X 107% gauss occurs only with protons with energies of 5 X 107 times the proton rest energy. Such
particles constitute less than 1071 of all cosmic rays, and it can be shown from Tidman’s calculations
that the effects are negligible.
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The cosmic-ray pressure perturbation is computed from the fact that the cosmic-ray gas is
not significantly affected by gravity and the speed of sound in the cosmic-ray gas is very much
larger than any of the wave velocities to be considered here. Hence the cosmic-ray gas pressure
is uniform along any given line of force. The volume of a tube of force does not vary to first
order in the perturbation, so to the order considered, d6P/dt = 0, i.e.,

Q§£+ v, ég =0. (It.y)

To solve these equations solve expression (II1.2) for ». and substitute into equation (II1.7).
Integrating the result over time gives
Bu® dp

61):—15’_% 6 4. (I11.8)

Differentiate equation (II1.3) with respect to time and use equations (II1.6) and (IIL.8) to
eliminate 6p and 6. The result may be written

) 1 dp ( ) 6) 928 4
2, — — .
Q*vy 1+a+pB +'yaz FTETR an-9)
where (Q? is the acoustic wave operator,
9%
S S
0= 812 " ay

It is now possible to return to the equations (II11.5) and (I11.6) for §p and 6p and employ expres-
sion (ITL.2) to eliminate v, with equation (IIL9) to eliminate z,. The results can be integrated
once over time yielding

ldp

20 dz )Q25‘4+%2 <1+a+ﬂ 1dp+ ]62514%,(111.10)

ay?
280 _1[(L=v/2)dp_ 28
0 P "—Bg[ P dz+782]Q25A
(1-11)
[ Cv\1ldp, 878%4
oy <1+a+ﬁ p dz 6z] dy? g

The final step is to operate on equation (111.4) with Q? and eliminate v, with the aid of equation
(IIL.2), and 8p and 8p with the aid of equations (I11.10) and (II1.11). The result can be written

u2[(’y+2a)Q”+72 2 y2]625A+§u2[2 _ai_ﬁ;_(“_:’__l/_z)__]g

332 ay? 2u* (1+a+p3)?2
(I11.12)
a0 +a+B—v/2) 9 % QaBA 0
(14+a+p)2 83‘2 o
after collecting terms and using the equilibrium conditions to eliminate dp/da.
Now suppose that 64 is of the form
84 = f(§) exp (iwt + iky) , (III.13)
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where £ = kz. The equation reduces to

dzf+[(1+a+ﬁ—7)(1+a+6) —avy/2
dg? k2L?

—2ay+-2 e+ (14 ) — (525) |7 =0,

where L is the scale height g/42(1 4+ a« 4 §). We impose the boundary condition that the per-
turbation 84 vanish at the base of the atmosphere 2 = 0 and remain finite as 23— + . In
order to obtain solutions which satisfy both conditions it is necessary that the coefficients of f
and d%/dg* have the same sign. Hence unstable solutions (% real and w = — 4/7 where 7 > 0)
occur provided only that

(1+a+B=—v)A+a+p)—ay/2
k2L?

[20&’)"‘]3—27(’)"5‘2 )}

(I11.14)

>2 'Y+U2(2a-!—v><1+ )+U4 am15)

4k*L*

where U = 1/kur. For marginal stability (U = 0) there are solutions provided only that
Y > Zavk 2, (IIL.16)

where V = (1 4+ a + 8)(1 + a + 8 — v) — ay/2. Thus instability occurs first at long wave-
lengths 2L —> 0, and requires only that ¥ > 0. The result is simply interpreted. If v > 1 in
the absence of magnetic field and cosmic rays (& = 8 = 0), there are no solutions with marginal
instability. The atmosphere is stable. The effect of the field and/or the cosmic rays is instability,
so that if a and § are sufficiently large, they both drive the system to instability no matter how
stable the thermal gas might be itself. The effective v for the interstellar thermal gas is 1 or
less,’® so that there is instability at long wavelengths for any a,8 > 0.

The next question is whether the instability grows sufficiently rapidly to be a significant
effect. To demonstrate the growth rate, write x = 1/k2L2%, n = L/ut, and U = na'’?, where n
specifies the growth rate in terms of the time required to move one scale height at a speed #.
Typically L = 100 pc, # = 10 km/sec, so that if 7 < 108 years, we must have # > 0.1. The
condition (II1.15) for instability becomes y(x) < 0, where

y(&) = &n* + #*(2a + v)/4] + 20y + 0’20 + v) + av/2
—(ltat+B—71+a+p)].

It is obvious that y(x) becomes large without limit as x— 4 o .'* There is a minimum value
of yatx = 20/a where b = ¥V — #%(Q2a + 7), @ = n2(4n® 4+ 2a + ). The minimum value of y
is negative, giving instability, provided only that

> 2ava. (II1.18)

(II1.17)

The condition for marginal stability was ¥ > 0. For # as small as 0.1, corresponding to a
growth period of 10® years, ¢ is of the order of 1072 and b =~ ¥ so that expression (IT1.18) is
hardly more than the requirement for marginal stability. The interstellar particle-field system
is always unstable under these circumstances because of the apparently low value of v and
the fact that a,8 > 0.

13 The slow compression of the interstellar gas involved here (107-10® years) tends to lower the tem-
perature in most cases (Parker 1953) by virtue of the greater ability to radiate (Savedoff and Spitzer
1950).

14 Negative values of « are physically uninteresting because % is imaginary then. Hence we require
that & > 0.
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To calculate the maximum growth rate #, note that when (v — 2a)¥ « (y + 2a){ay + 1)
the maximum value of # for which expression (I11.18) is satisfied and & > 0 is

14
M =T (y ¥ 2a) (ay+ ¥ ) 112

This maximum # is associated with infinite wavelength in the vertical direction, so it should
not be taken too seriously. The effective maximum # is somewhat less. For a galactic magnetic
field of 5 X 107¢ gauss, a cosmic-ray pressure of 0.45 X 1072 dyne/cm?, and a thermal gas
density of 3 hydrogen atoms/cm?® with an rms velocity # = 8 km/sec, it follows that pu? =
3.0 X 1072 dyne/cm?, a = 0.3, and 8 = 0.15. Put v = 1. Then ¥ = 0.50 and the maximum
growth rate is # = 0.3, giving 7 =~ 3 X 107 years. A much weaker galactic field permits equi-
librium with 1 atom/cm?, giving pu2 = 1 X 1072 dyne/cm? with @ ~ 0 and § = 0.45. With
o ~ 0 the requirement (II1.18) becomes ¥ > #?{or instability, and hence the maximum growth
rate is #max = 0.807, giving 7 = 1.2 X 107 years.

It is evident that a large number of cases could be investigated, involving various values of
0,3,y and employing different boundary conditions, including cutting off the atmosphere at
some specified height z = % with a uniform cosmic-ray gas pressure Py or a large-scale uniform
magnetic field By beyond. The reader who wishes to investigate the possible effects of significant
intergalactic pressure may find some interest in this, Stability can be achieved under some
circumstances, as in the limit of strong intergalactic magnetic fields. The stability arises from
the fact that with an external pressure the weight of the gas no longer is responsible for confin-
ing the magnetic field and cosmic rays. It is the weight of the gas on the field which produces the
instability.

We shall content ourselves here with two simple examples of the nature of the unstable flow
to illustrate the draining of the thermal gas into the low regions along the lines of force. Suppose
that the cosmic-ray gas is absent and the thermal gas is cold. Then 8 =0, u? = 0, au? =
1V 4% # 0, where V4 is the Alfvén speed B/(4wp)!’2. Equation (I11.14) reduces to

LSy grp o
g TR =0,

where, with s? = V42r%/L?,

4 4 2 2
K= %k%'?[l _E (1 +k2L2)—(S2k2L2> ]%’i‘kﬁsz

in the limit of long growth times, s >> 1. In order that §4 vanish at z = 0, put

¢ .
8 A = eBL exp — cos ky sin Kz,
T
where € << 1, It follows that the magnetic lines of force are given by
t .
g—g =el exp—sin Kz (1 —cosky),
T

where 2 is the value of 2 at which the line crosses the z-axis. It is readily shown from expression
(I11.9) that

v, = —%VAS}CL expésin kvy sin Kz

and from expression (I11.2) that

vV ! .
v, = ——e—fexp—;cos kysin Kz.
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It is evident that the motion drains the thermal gas away from the high regions ky = + (2n 4
1)7r along the magnetic lines of force into the low regions by = £ 2ur, as illustrated in Figure 2.
When s >> 1, the motion is principally in the horizontal direction.

Suppose, on the other hand, that the magnetic field is very weak,!® the thermal gas is cold,
and most of the pressure is contributed by the cosmic-ray gas. Then a =~ 0, #* = 0, fu? =
Ct # 0, where C is the equivalent thermal velocity, C = (P/p)!/2. The atmosphere is unstable
for any value of C > 0. Equation (II1.14) reduces to

62[}3211,2 a (k2C1272>2]f =0.

Thus, the non-trivial unstable solution is £2C%*r? = kL with fany arbitrary function of 2, provided
only that f is single valued and continuous so as not to violate the assumptions which went into
the initial linearization of the equations. The reason for the arbitrariness of f is that neither
the thermal gas nor the vanishing magnetic field can resist compression, and the cosmic-ray
gas avolds compression by redistributing itself along the magnetic lines of force.

Put

¢
6 A =¢el exp—cos kyf(z),
T
and suppose that df/ds = O(kf) for all values of 2. Then the magnetic lines of force are given by

gm0 =L exp;‘u —cosky) f(z),
and

L i, L ¢
vy=——e;exp—7—smkyf(z), vz=—-e;exp;coskyf(z).

Thus again the motion represents a draining of the thermal gas along the magnetic lines of force
from the high regions into the low regions.

APPENDIX 1V
VARIATION OF THE GRAVITATIONAL FIELD

The calculations in Appendix I11 were carried out for the simple case that the gravitational
acceleration g is independent of height z. It is physically obvious that the instability does not
depend on this simplification for its existence, but it is not without interest to examine what
quantitative changes may be expected when the actual variation of g with height above the
central plane of the Galaxy is taken into account.

For the case that the gas is cold, #* = 0, and there is no cosmic-ray pressure, write ¥V 42% =
2au?, where V4 is the Alfvén speed that is independent of height. It is readily shown that in
place of equation (II1.12) the equation for 64 is

A [g() H]azm L %A
ar _*{VAZ ValVi | =5 T 82 a) 7 = 0.

As a first approximation write g(z) = gokz, where gok is a constant. Then the equation has
solutions of the form

P g . L
54 = exp (;—Hky—}—ﬁ—i){(fl Ful (1 +ia?) 4k —ig]

FCoaPil (34ia?) /4;3; —if?],

* The magnetic field is taken to be so weak that its pressure can be neglected but not so weak that
the radius of gyration of the cosmic-ray particles exceeds the scale L of the system. The range B =
10-8-1079 gauss would be a reasonable compromise in this respect.
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where
Va (1+1/027%) <gor) 1/2 ( 172
9 "4 _ e
¢ ~gor (1 —1/Q272)1/2° E=kz 92 ' ,

and £ = kV4. When Qr > 1, both solutions vanish at £ = 4 . Hence there are unstable
solutions for all Q7 > 1. VVhen Qr < 1, there are no solutions satisfying the boundary conditions
at £ = £ oo, At small 3,
t . 2g2 /2 —1)
54 = exp (—+zky>§cl[1 +“2‘§ 4 Lo /12 ) gay ]
T

IR )

Atlarge | 3|, the z-dependence is made up of waves of the form £2exp [+ (i/4) (28 — a?In £2)
when Q7 > 1.

For the case that the cosmic-ray pressure is non-negligible, the solution is readily carried out
for a cold gas #2 = 0 and weak magnetic field (B*/8r << P), giving

8P | dg 9P a 8P _

gt ds 91

+C2€[1+ ‘1

In this case the waves at each level in the medium may have independent frequencies and
wavelengths, provided only that 6P remains single valued so that the equations still apply. The
reason is that neither the gas nor the field transmits pressure. The cosmic-ray pressure is always
uniform along each line of force in the present linear approximation. So there are no pressure
fluctuations in the linear approximation for one level to disturb another, There are solutions
of the form

5P=f(z)exp[~"—+z'k(z)y],

7(3)
where f(z) is an arbitrary single-valued continuous function of z. The functions k(z) and 7(2)
are related by
1 1 d g]
2 = s |
k2 (z) g2(z) 2 (z) [TZ(Z) + dz

Since dg/ds > 0, it is evident that there is always a wavenumber k(g) that grows with any given
rise time 7(z). The shorter the rise time, the shorter the associated wavelength. Generally speak-
ing, 7(z) is of the order of the free-fall time over one wavelength.

APPENDIX V
STABILITY OF A CIRCULAR GEOMETRY

Consider the stability of a two-dimensional atmosphere with circular symmetry, involving
a magnetic field B(@) whose lines of force form concentric circles about the origin. Here @ repre-
sents distance measured from the origin and ¢ represents azimuth measured around the origin.
The gravitational field is radially inward with magnitude g(@). The thermal gas is isothermal
with rms thermal velocity # in any given direction, so that p = p#? The cosmic-ray gas pressure
is P. Equilibrium requires that

B2 2
%(erg;qLP)wLZ]—%:—p(w)g(w). V.
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The simple case that the thermal gas, the magnetic-field, and the cosmic-ray gas pressures are
in a fixed ratio, defined by equation (2) in the text, permits equation (V.1) to be written

éﬁ__ g(®) L 2a =~1
do  w*(l1+4+a+8) (1+eae+p)m L

1
= (V.2)
o

Introduce a transverse perturbation vs,vs with the magnetic perturbation described by the
vector potential e,04 (w,¢). The linearized perturbation equations may then be written

%24 = vaB(w), (V-3)

ple ot aP) b v At @B 2 g,
p o= — = D09+ 0P) + o (o) 2, v-9)
B0t il o] o (@ie) +3 5] o0, v

22 4 o Lt e[ 2 (wue) +2 5] =0, v
—‘iﬁf—v+vadP 0. (V.8)

The general solution of these equations is difficult because of the radial dependence. We
know that the thermal gas is stable by itself if v > 1. The question is whether the magnetic
field and the cosmic-ray gas tend to produce instability in this configuration, as they did in the
horizontal field of Appendix IT1. So it is sufficient to consider the thermal gas to be cold, #* = 0,
thereby exposing the basic instabilities, if any, of the magnetic field and cosmic-ray gas.

Consider first the stability of the magnetic field. Put 8 = 0 and an? = £V 42 = 0, where V4
is the Alfvén speed B/(4wp)'/2. The quantities p, P, 6p, and 8P vanish in the equations. Divide
expression (V.6) by p and differentiate with respect to time. Use expression (V.3) to eliminate
7w and expression (V.5) to eliminate v4 from the result, obtaining

_(22_5_;1__}_[(1_!__1_@)( VA2 82>+
ar p B 0 dw/ \32 " @ 9¢? awaﬁ

Then divide equation (V.4) by p and differentiate twice with respect to time. After eliminating
dp/p, one can write the result as

Va? 92 )}
L = V.
(az2 ) YR (az2+ ot 9g7/ 104 =0 s
with the aid of the equilibrium relation (V.2), which reduces to
1 d dp 1 g
2 p dGS ZU 14 a2
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in the present special circumstances.’® A solution of the form
84 = R(w) exp i{wl + no) (V.10)
leads to
1dR 72
R — e —— — . V.
dwz+wdw+[ ( + ] 0 (¥

The differential equation for the radial dependence is easily solved for the cases that g is inde-
pendent of @, in which the system is bound in a conical potential well, or g increases proportional
to @, so that the system is bound in a parabolic potential well. To take the last case first, put

@
—_— — = e— - V.
g(w) g(a)a, = = (V.12)

where g(a) is the gravitational acceleration of @ = a. Then at small @, such that @ <V, the
term g%/V 4% may be neglected compared to w?/V 4% and the solution is

R(®) =~ J.(qw) , (V.13)
where
_ 1 %g ( a) 72\2 1/2
g= Var KZn ——~a-«—) - 1] . (V.14)
In the limit of large 7,
qu~n g(;)—zg, (V.15)
4

which may be large compared to 1 while @ K V7. It is evident that the unstable solution
is well behaved, satisfying 64 = 0 at some inner radius @ = b, say, and oscillating with de-
clining amplitude with increasing @. At large @ the solution declines asymptotically as
@2 exp [— gla)@?/2V 42a). Within the limitations of these boundary conditions, the system is
unstable, just as in the flat atmosphere considered in Appendix III.

If g is independent of @,'7 the solution of the radial equation is

R(w) =2 i?), (V.16)
where Z represents a Bessel function and
1 gz 1 1/2 < g2 72 )1/2
= =+n{2——1) . (Va7
] (VA4+VA2T2 R AN i
In the limit of large 7, I ~ V42/g and p ~ ngr/V 42 The solution
R@®) = ilTo(iw/l) — exp (= 7p)T—sp(is/D)] (v.18)

is real and well behaved at all finite @, going to zero as @—> o, This is readily seen from the
leading terms of the expansion at small @/

exp ( ~7rp/2)[exp(ip lnw/21)+exp( —1ip Inm/Zl)]
P T(ip) I'(—ip) ’

6 Integration of this equation with g(®) = go and g(®) = gew/e leads to p(ws) = pla)(a/=)* exp
(—2g0w/V 42) and p(a)(a/w)? exp (~gow?/V 4%a), respectively. The singularity w2 at the origin is artificial,
introduced by the failure of the simple form B? « p to give B — 0 at @ = 0. The singularity is readlly
excluded by inclosing it with a circular boundary, @ = b.

Rlw) >~ (V.19)

17 There is a discontinuity in the gravilational field at the origin in this case.
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which oscillates rapidly, and from the asymptotic expansion
TP l )1/ 2 ( w)
~ —_— — — —_— —_—— V.20
R(w) exp(z)[l exp( —27p)] - exp ] (V.20)

at large @w/I. Thus again the system is unstable for large 7(g7 > V).

Consider the other cxample now in which the magnetic-field pressure can be neglected but
the cosmic-ray gas pressure is finite. Then 64 = 0, §p = 0. Differentiate expression (V.6) with
respect to time and use formulae (V.4) and (V.5) to eliminate vw and v4. Differentiate expression
{V.8) with respect to time and use expression (V.4) to eliminate va, solving the result for dp,
which may then be used to eliminate ép from the previous equation. The resulting equation is

646P+ dg g\ 9P | g?a*P
o dw ©w/ 082  w? 9¢?

=0. (V.21)

This equation has solutions of the form

6P=k(w)exp[ +m(m)¢]

(@)

where k() is an arbitrary single-valued function of @. However, with a circular geometry ()
is not an arbitrary function of its argument because 6P must be a single-valued function of ¢,
requiring that #{w) equal an integer. Since the displacement of the medium must also be a single-
valued continuous function of @, it follows that #(@) cannot change discontinuously, so # must
have the same integral value for all m. Consequently, 7(@) is determined by # and g(w) from

1 1 dg g n?g?

(@) ' () \do w© o2 =0. -2z

The growth time 7(@) is independent of @ only for the special form of g(&) given by

cn w‘zn
g ( ) = (02n+ 232”) (V-23)
where ¢ is a constant, For c— 4 o, the gravitational field becomes a parabolic potential well.

If we write g(@) = g@/a, we get 72 = a/nge as the characteristic growth time in this case. This
is again of the order of the free-fall time over one wavelength.
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