NIKA: Notice for Observers

N. Ponthieu^{*}

January 24, 2014

Abstract

This notice gathers instructions for observers using the NIKA instrument.

1 Getting Ready

- 1. From the main control terminal, log on mrt-lx1.iram.es. Let's call T1 this terminal that will be dedicated to PAKO.
- 2. From anothe terminal, log on mrt-lx1.iram.es. Let's call T2 this terminal dedicated to IDL real time analaysis.
- 3. From another terminal, log on mrt-lx3.iram.es. Let's call T3 this terminal, that will be dedicated to Xephem.

1.1 PaKo

In T1:

- 1. type goPako
- 2. type PakoDisplay
- 3. type PakoNIKA

1.2 Xephem

In T3:

- 1. type ps xa |grep azElToXephem.py & to check if the script is already running.
- 2. If yes, then do nothing. If not, then type <code>azElToXephem.py &</code>
- 3. Once the script is running, type xephem &

1.3 IDL set up

In T2, you will log in and work on SAMI, the computer dedicated to NIKA data processing during observations:

- 1. type ssh_sami¹
- 2. type rt. This will put you in the "Realtime" directory.
- 3. type emacs &. This will allow you to edit the scripts relevant for real time data analysis.
- 4. type idl

2 Analyzing data

Shortly after a scan is done, the NIKA scientific data and the AntennaIMBfits are written on SAMI and can be processed. There are two types of observation: the "science" scans and the "calibration" scans. There is a specific routine to analyze each type of scan.

- The science scans are meant to be optimally processed offline with taylored procedures. The real time software mentionned in this note only aims at giving a quick feedback
- The calibration scans expect actions from the observer and interaction with PaKo.

^{*}Nicolas.Ponthieu@obs.ujf-grenoble.fr

¹This is an alias to ssh observer@150.214.224.22 -Y with password nika30m.

2.1 Calibration scans

2.1.1 Pointing

- 1. In the emacs window, edit run_pointing.pro and update the day and scan_num parameters.
- 2. update the p2cor and p7cor parameters with the "SET POINTING" values displayed in the PAKO window.
- 3. Save the file
- 4. In the idl session in T2, type .r $\texttt{run_pointing}$
- 5. Several plot windows might be on top of eachother
- 6. Follow instructions returned by the code in T2. By default, follow instructions "B (2mm) : (MAP) (for PAKO and pointing model)".

2.1.2 Pointing_liss

- 1. In the emacs window, edit run_pointing_liss.pro and update the day and scan_num parameters.
- 2. Save the file
- 3. In the idl session in T2, type .r run_pointing_liss
- 4. Several plot windows might be on top of eachother
- 5. Follow instructions returned by the code in T2

2.1.3 Focus

- 1. In the emacs window, edit run_focus.pro and update the day and scan_num parameters.
- 2. Check the value of focusz in the PAKO display window.
- 3. Do not change the fooffset values unless you have modified the pako script focusp.pako.
- 4. Save the file
- 5. In the idl session in T2, type .r $\texttt{run_focus}$
- 6. Several plot windows might be on top of eachother
- 7. Follow instructions returned by the code in T2

2.1.4 Focus_liss

- 1. In the emacs window, edit run_focus_liss.pro and update the day and scan_num parameters. Scan num should be the first of the five scans involved in this analysis.
- 2. Save the file
- 3. In the idl session in T2, type .r run_focus_liss
- 4. Several plot windows might be on top of eachother
- 5. Follow instructions returned by the code in T2

2.1.5 Skydip

- 1. In the emacs window, edit run_skydip.pro and update the day and scan_num parameters.
- 2. Save the file
- 3. In the idl session in T2, type .r run_skydip
- 4. Several plot windows might be on top of eachother
- 5. Follow instructions returned by the code in T2

2.1.6 OTF_geometry

- 1. In the emacs window, edit run_otf_geometry.pro and update the day and scan_num parameters.
- 2. Save the file
- 3. In the idl session in T2, type .r $\texttt{run_otg_geometry}$
- 4. Several plot windows might be on top of eachother
- 5. Follow instructions returned by the code in T2

2.2 Science scans

2.2.1 Total power maps

All maps (OTF or Lissajou) in total power mode can be reduced by the same script:

- 1. In the emacs window, edit run_otf_map.pro and update the scan_num and day parameters.
- 2. If you're observing a point source, set diffuse = 0. If you're observing diffuse emission set diffuse = 1.
- 3. Save the file
- 4. In the idl session in T2, type .r run_otf_map
- 5. Several plot windows might be on top of eachother

2.2.2 Polarization maps

All maps (OTF or Lissajou) in Polarization modes can be reduced by the same script:

- 1. In the emacs window, edit run_otf_polar_maps.pro and update the scan_num and day parameters.
- 2. Save the file
- 3. In the idl session in T2, type .r <code>run_otf_polar_maps</code>
- 4. Several plot windows might be on top of eachother