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Polytechnique de Grenoble, 53, rue des Martyrs, Grenoble, France

2 IPAG, Observatoire de Grenoble, BP 53, 38041 Grenoble, France
3 Institut Néel, CNRS & Université Joseph Fourier, BP 166, 38042 Grenoble, France

October 2012

ABSTRACT

Aims. Test the observation pipeline with the NIKA camera.
Methods. We report here the method used to perform simulations of the full observation pipeline of the NIKA camera. This includes
the simulation of four main steps. 1- The realistic serpentine like scan used to image astrophysical sources at the IRAM 30m telescope.
2- The simulation of the atmospheric noise. 3- The physical modeling of the detectors. 4- The reconstruction of the absorbed optical
power. This pipeline allows us to construct the Time Ordered Information (TOI) for each detector.
Results. The simulation of the NIKA camera should be realistic enough to be used for estimating the expected outcomes of the
observation of astrophysical sources. It will be used in the case of the observation of well chosen galaxy clusters, via their imprints
in the Cosmic Microwave Background (CMB) due to the thermal Sunyaev-Zel’dovich effect, in order to test decorrelation techniques
and to estimate the expected observed maps.
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1. Introduction

The New IRAM KIDs Array (NIKA) is a ∼ 12 arcsec reso-
lution instrument in development for millimeter wave observa-
tion. NIKA consists of a dual-band array of Kinetic Inductance
Detectors (KIDs) at 140 GHz and 220 GHz1. A prototype of
the camera has already been successfully tested at the Institut de
Radio Astronomie Millimétrique (IRAM) 30-meters telescope at
Pico Veleta (Granada, Spain), during four campaigns in October
2009 (Monfardini et al. (2010)), October 2010 (Monfardini
et al. (2011)), November 2011 and June 2012. They allowed to
demonstrate performances comparable to the best bolometers ar-
rays developed to date for these wavelengths, such as GISMO
(Staguhn et al. (2006)). The final instrument should be opera-
tional in 2014.

Unlike traditional instrument which use bolometers as their
detectors, NIKA uses KIDs. KIDs are superconducting res-
onators for which the resonance frequency changes as a function
of the absorbed optical power (see for example Swenson et al.
(2010)). They can be modeled by a complex transfer function
with real part I (In-phase) and imaginary part Q (Quadrature)
(Grabovskij et al. (2008)), measured as a function of time. This
quantities can then be use to reconstruct the shift of the reso-
nance frequency and therefore estimate absorbed optical power
(Calvo et al. (2012)).

This note presents the construction of a simulation of the
NIKA camera, including the modeling of the resonances. It is
divided into three main section. In the first one, we describe the

1 Dual-polarization LEKID (Lumped Element KID, (Doyle et al.
(2008))) pixels realized on a few hundreds µm high resistivity silicon
substrate. The pitch between pixels is 2.3 mm at 140 GHz, correspond-
ing to an effective focal plane sampling of 0.75 Fλ and 1.25 Fλ at 220
GHz. The detectors are cooled down to about 100 mK with a 4He – 3He
dilution cryostat.

operating principle of the KIDs and the way they have been mod-
eled. The second section presents the construction of the Time
Ordered Information (TOI) I(t) and Q(t) obtained with NIKA
for a run of observation at the IRAM 30-meters telescope at
Pico Veleta. It includes the sources of noise such as the atmo-
sphere, the electronic noise and the intrinsic noise of the de-
tectors. Finally, we expose the way the resonance frequency is
reconstructed and we test this method in extreme cases.

2. Modeling of the KIDs

2.1. Modeling KIDs

KIDs are high quality superconducting resonators made of an
inductive line coupled to a capacity C (Calvo et al. (2010)). The
inductance is itself due to the sum of the geometric inductance
Lg and the kinetic inductance Lk. The resonance frequency of
KIDs is given by

f0 =
1

2π
√

C
(
Lk + Lg

) (1)

Absorbed photons of high enough energy can break Cooper pairs
and induce a shift in the resonance frequency due to the change
of Lk, which is sensitive to the variation density of supercon-
ducting carriers. The frequency shift can be expressed as δ f0 =

−
C f 3

0
2 δLk. For thin films, the incoming optical power Popt is di-

rectly proportional to the change of kinetic inductance Swenson
et al. (2010). Therefore, the shift of the resonance frequency ap-
pears to be the right quantity to probe the optical power, we can
assume δ f0 ∝ Popt.

KIDs can be modeled by a shunt impedance, Zres, connected
to the transmission line (Grabovskij et al. (2008)). The trans-
fer function is written as a function of an injected frequency,
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Fig. 1. Amplitude and phase of the transfer function of KIDs under dark
conditions (black) and under illumination (red).

f , the resonance frequency, f0, and a set of parameters, p =
(X1, X2,Z0,Qi,Qe)

S 21( f ; f0, p) =
2ZresZ0

Zres(2Z0 + j(X1 + X2)) + (Z0 + jX1)(Z0 + jX2)
(2)

with the shunt impedance written as

Zres =
Z0Qe

2Qi

(
1 + 2 jQi

f0 − f
f0

)
(3)

The parameters X1, X2 and Z0 are impedances accounting for
the connections; Qi is the intrinsic quality factor of the resonator
and Qe is the external quality factor due to the coupling with
the readout electronics (the description of the electronics can be
found in (Bourrion et al. (2011))). The real and imaginary parts
of the transfer function are respectively noted I = Re(S 21) + Ic
(In-phase) and Q = Im(S 21) + Qc (Quadrature), where Ic and
Qc account for a given offset. The amplitude is then given by
A =

√
I2 + Q2 and the phase by φ = atan

(
Q
I

)
.

Figure 1 represents the amplitude and the phase of the KID
transfer function under two different conditions. The black line
correspond to the resonance under dark conditions and the red
one when the detector is illuminated. In the case of exciting the
detector with a frequency equal to the resonance frequency f0,
illumination leads to a change in the measured amplitude ∆A and
phase ∆φ of the transfer function.

Figure 2 represents an example of I and Q as a function of
the exciting frequency f . These data have been taken during a
frequency scan, they are given for a frequency range which con-
tains a resonance in the transmission line, corresponding to a sin-
gle KID. The parameters of the model given by equation 2 can
be obtained for individual KIDs by fitting the resonances. The
green line, in figure 2, gives the result of the least square fit of I
and Q. In this case Z0 is fixed to 50 Ω and we impose X1 = X2,
we obtained X1 = X2 = 3.0 Ω, Qe = 5.2 × 104, Qi = 1.0 × 105

and f0 = 1.2729985 GHz. For the array used here, the values
of the parameters do not change significantly for different KIDs.
The typical values of the parameters obtained in this example are
Z0 = 50 Ω (fixed), X1 = X2 ∼ 3 Ω, Qe ∼ 5 × 104, Qi ∼ 1 × 105

and f0 ∼ 1.27 GHz.

2.2. Simulation of the transmission line

The transfer function of the full line (KIDs and transmission)
can be modeled as

S l( f ) = Al( f )eiθl( f ) ×

Nk∏
k=1

S 12,k( f ; pk) (4)

where k labels the KIDs and Nk is the number of detector. The
parameters Al( f ) and θl( f ) give the amplitude and the phase of

Fig. 2. Frequency scan of the real part (I) and the imaginary part (Q)
of the transfer function of a resonance of the transmission line, corre-
sponding to a KID. The data points are represented in red for I and Q
as a function of the excitation frequency f . The green line gives the
simultaneous least square fit of I and Q as a function of excitation fre-
quency, with the model given by equation 2. Here Z0 is fixed to 50 Ω
and we impose X1 = X2, the parameters obtained in this example are
X1 = X2 = 3.0 Ω, Qe = 5.2 × 104, Qi = 1.0 × 105 and f0 = 1.2729985
GHz.

Fig. 3. Example of a simulated transmission line. Each KID is similar
with parameters Z0 = 50 Ω, X1 = X2 = 3 Ω, Qe = 5 × 104 and Qi =
1 × 105. The resonance frequencies are separated by 0.5 MHz starting
from 1.5 GHz. We can see holes in the line which correspond to off
resonance or blind KIDs.

the transmission line and each detector is modeled by equation 2
with specific parameters. Figure 3 gives an example of a simu-
lated transmission line where all the KIDs are identical with their
resonance frequency regularly distributed along the line, except
for holes in the line which correspond to blind or off resonance
detectors.

3. Simulation of the TOIs with NIKA

3.1. Simulation of the instrument

The simulation is based on the data taken during the run of
October 2011. NIKA is simulated by:
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– 2 arrays at 140 GHz and 220 GHz. The bandwidths are sup-
posed to be infinitely narrow for both observation frequen-
cies.

– The number and the location of the detectors in the focal
plane are taken from real data: the size of the camera in
the focal plane is about 2 arcmin an the detectors are sepa-
rated by about 13 arcsec. The only KIDs considered here are
the KIDs which are working normally and the off resonance
KIDs.

– The scan strategy is similar to the one used in practice at the
IRAM 30-m telescope.

The following method is adopted: we first construct temper-
ature Rayleigh-Jeans TOIs according to the scan strategy used
here (i.e. the optical signal). Then the TOIs are converted into
shift of the resonance frequency TOI for each detector, taking
into account the different responses of the KIDs. From equa-
tion 4, the TOIs I(t) and Q(t) are obtained for injected frequen-
cies fk corresponding to the detector resonances. Finally, the
shift of the resonance frequency TOIs of each KID are recon-
structed using I(t) and Q(t); this will be further developed in
Section 4.

3.2. Modeling the sources of noise

3.2.1. Atmospheric noise

The atmospheric noise is due to the thermal emission of clouds
of water vapor which pass by the telescope field of view. The
speed of these clouds is much larger than the speed of the scan
of the telescope such that the corresponding noise almost only
depends on time. However, since all detectors do not have the
exact same position in the focal plane, the atmospheric noise is
different for each KID. At first order, this effect depends linearly
on the distance between the considered KIDs and the center of
the array. We simulate the atmospheric noise using a noise map
passing by the telescope with a given velocity. The spatial power
spectrum of the atmospheric contribution is given by{

Ã ∝ kα
α ' −0.8 (5)

The atmospheric noise is added for each detector to the Kelvin
Rayleigh Jeans (KRJ) TOIs since it is an optical contribution. Its
amplitude is adjusted typically to a few KRJ at 140 GHz for a 15
minutes scan and we suppose it is proportional to ν2.

3.2.2. Instrumental noise

The instrumental noise arises from the KIDs themselves and
from the electronics. It can be divided into a non correlated white
noise, Ndec, different for all detectors, and a correlated noise,
Ncor, which is proportional for all KIDs and follow a 1/ f power
spectrum. In this case, the noise is added to the I(t) and Q(t)
TOIs because it arises from the instrument. Once again, the given
values have been estimated from the run of October 2011. We
have for both I(t) and Q(t)

Ñi=cor,dec ∝ f βi

βcor ' −0.1 Ñcor(1 Hz) ' 400 [adu].Hz−1/2

βdec = 0 Ñdec ' 110 [adu].Hz−1/2
(6)

Note that I(t) and Q(t) are dimensionless2, we will see in
Section 4 how they are used to reconstruct the shift of the reso-

2 In practice I(t) and Q(t) are measured in volts, the amplitudes of the
noises are given according to these units used in practice.

nance frequency TOIs and therefore the temperature Rayleigh-
Jeans TOIs.

3.3. Final TOIs

The Rayleigh-Jeans temperature TOIs are then converted into
shift of the resonance frequency TOI via the pointing matrix
Pk(xk, yk, t), the coefficient Γν taken from a reference detector for
each array (Γ140GHz = 670 Hz.K−1

R j and Γ220GHz = 500 Hz.K−1
R j )

and the coefficients λk which are known experimentally and ac-
count for the fact that all KIDs do not have the same response to
optical power. We can write the shift of the resonance frequency
TOIs as

δ f0k(t) = ΓνλkPk(xk, yk, t)
[
S astro(xk, yk) + S atmo(xk, yk, t)

]
(7)

where k labels the KIDs (i.e. the injected exciting frequency or
the tone). The quantity S astro(xk, yk) is the signal due to the target
astrophysical source and S atmo(xk, yk, t) the atmospheric noise.

The TOIs Ioptic(t) and Qoptic(t) are then computed from equa-
tion 4 as the real and imaginary part of the transfer function. The
resonance frequency is the sum of an initial frequency, set to the
injected frequency fk (corresponding to the resonance frequency
of each detector), and the shift of the resonance frequency given
by equation 7. The final I(t) and Q(t) TOIs are then given by

Ik(t) = Ioptic(t) + µkNI,cor(t) + χkNI,dec(t)

Qk(t) = Qoptic(t) + µkNQ,cor(t) + χkNQ,dec(t)
(8)

where µk and χk give the relative amplitudes of the electronic
and intrinsic detector noise respectively.

4. Measurement of the absorbed optical power

4.1. Reconstruction of the shift of the resonance frequency

In practice, the full resonance cannot be monitored permanently
during observations. In order to estimate the shift of the reso-
nance frequency δ f0, the following strategy is used Calvo et al.
(2012). The transfer function of each KID is sampled at 880
Hz, this gives the real and imaginary parts of S l( fk) noted ik(t)
and qk(t) (c.f. equation 8). The excitation frequency generated
by a local oscillator f k

LO falls into the resonance of each KID
k and is modulated such that it takes alternatively the values
f k
− = f k

LO−δ fLO/2 and f k
+ = f k

LO +δ fLO/2. The quantity δ fLO = 2
kHz in our case and in the simulation, f k

LO is set to the exact res-
onance frequency of the KID k under dark conditions; this is not
exactly the case in practice. The 880 Hz samples are then used
to compute the averaged I and Q over Nm = 40 points, and the
averaged difference between samples at f− and samples at f+.

I =
∑Nm

p=1 ip

Q =
∑Nm

p=1 qp

δI =
∑Nm/2

p=1 i2p − i2p−1

δQ =
∑Nm/2

p=1 q2p − q2p−1

(9)

Figure 4 represents the resonance in the I – Q plane. Red points
are averaged I and Q (22 Hz) measured with a fixed difference
of the shift of the resonance frequency ∆ (δ f0), however the dis-
tance between these points is not constant. We define the vectors
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Fig. 4. I – Q plane around the resonance. Red points give I and Q sam-
pled at 22 Hz for which the difference of the shift of the resonance
frequency ∆ (δ f0) is constant between two consecutive points. Vectors
V = (∆I,∆Q) and δV = (< δI >, < δQ >) are represented.

V = (∆I,∆Q) and δV = (< δI >, < δQ >) where ∆I and ∆Q
stands for the difference between two consecutive points at 22
Hz3. In the case of small differences between consecutive points,
δ f0 is proportional to the projection of V on the axis directed by
δV, given by δV.V

|δV| . Normalizing this quantity by
∣∣∣∣( dI

d f ,
dQ
d f

)∣∣∣∣ ≡ |δV|
δ fLO

allows us to measure difference of the shift of the resonance fre-
quency between two point sampled at 22 Hz. Finally we can
write

∆
(
δ f meas

0

)
= δ fLO

δV.V
|δV|2

= δ fLO
∆I < δI > +∆Q < δQ >

< δI >2 + < δQ >2 (10)

The shift of the resonance frequency as a function of time is
then computed by integrating the differences between the 22 Hz
sampled data, given by

δ f meas
0 (t) =

t∑
t?=0

∆
(
δ f meas

0

)
(t?) (11)

Figure 5 gives, on the left hand side, the δ f meas
0 k(t) TOIs in

the case of the observation of the cluster Abell 665 during the
run of October 2011. The right hand side shows the δ f meas

0 k(t)
TOIs in the case of the simulation of the observation of a cluster.
In both cases, the given TOIs are represented for four KIDs of
the 140 GHz array, with different amplitude due to the response
(described by λk in the simulation). The astrophysical signal is
drawn within the atmospheric and instrumental noises. The real
data contain glitches while they have not been taken into account
in the simulation. However they are easily removed in practice.

Figure 6 represents the power spectrum associated to the
TOIs given in Figure 5. We can see the contribution of the dif-
ferent sources of noise, given by the different slopes, in both real
and simulated data. Note that the real data power spectrum con-
tains lines at ∼ 1.5 Hz and its harmonics, due to mechanics of
the cryostat, which are not included in the simulation.

According to figure 5 and figure 6, the simulation is consis-
tent with real data, within the approximations made here.

4.2. Validity range of the measurement method

It is important to emphasize that the method described above
can break down in certain situations. First, it assumes that the
sources observed are faint, otherwise the misalignment of the
vectors δV and V becomes too large (i.e. the optical load shifts

3 < . > means that the values are smoothed using 50 points before
and after the considered point.

the resonances such that it becomes larger than the width of
the resonance, see Figure 1). Then, the time line is built via
Equation 11, integrating small differences. Brutal changes dur-
ing the observations might lead to bias in the method. Finally,
the losses in the superconductors increases under illumination.
This leads to a change of the radius of the I – Q circle given in
Figure 4. However, this effect does not account for more than 2%
bias; it has not been simulated in the work presented here (i.e. all
parameters p in equation 2 are held constant for a given KID).

In order to test the validity of the method, we propose to
simulate the observations of point sources with different temper-
atures, without noise, monitored by the maximum value taken
by δ f0(t) (in order to check the faint source assumption) and for
different speed of the scan vs (in order to check the impact of
brutal changes during observations). Let δ f meas

0 (t) be the mea-
sured shift of the resonance frequency described in Section 4.1,
during the scan of the source, and δ f exp

0 (t) the expected shift. We
define the quantities
ξint =

∫
δ f meas

0 (t)dt∫
δ f exp

0 (t)dt

ξamp =
max(δ f meas

0 (t))
max(δ f exp

0 (t))

(12)

which we will use as validity criteria. In the case of accurate
photometry, we expect ξint and ξamp to be close to 1. The pan-
els left and right of Figure 7 represents respectively the value of

ξint and ξamp in the plan
(
log

(
vs

1 arcsec.s−1

)
, log

(
max(δ f exp

0 (t))
1 Hz

))
. The

typical speed of scan at the IRAM 30-meters telescope is ∼ 10
arcsec.s−1, so the flux measured is in agreement with the ex-
pected flux at 1% for most cases of interest. Even for planets
which are the strongest sources, max

(
δ f exp

0 (t)
)
∼ 5×103 Hz, the

photometry is accurate within a few percents error.
Since we are interested in the observation of sources much

fainter than planets, the method described in Section 4.1 appears
to be accurate within a few percent.

5. Conclusions

We have constructed the simulation of the observation pipeline
of the NIKA camera. The detectors have been modeled with a
transfer function and coupled to a single transmission line. The
different sources of noise have been taken into account and ad-
justed according to the run of October 2011. The method used to
recover the absorbed optical power has been tested using a simu-
lation of KIDs. It is consistent with observations of real sources
and appears to be valid in non extremal cases such as the obser-
vation of galaxy clusters.
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Fig. 5. Left panel: δ f meas
0 k(t) TOIs in the case of real data taken during the run of October 2011 for the observation of the galaxy cluster Abell 665.

Right panel: δ f meas
0 k(t) TOIs in the case of the simulation of the observations of a cluster of galaxies. In both cases the TOIs correspond to the four

KIDs at the extremities of the 140 GHz array.

Fig. 6. Left panel: power spectrum associated to δ f meas
0 (t) TOIs in the case of real data taken during the run of October 2011 for the observation

of the galaxy cluster Abell 665 (Figure 5, left). Right panel: power spectrum associated to δ f meas
0 (t) TOIs in the case of the simulation of the

observation of a cluster of galaxies (Figure 5, right). We can see in both cases the different slopes corresponding to the different sources of noise.

Fig. 7. Left panel: ξint =

∫
δ f meas

0 (t)dt∫
δ f exp

0 (t)dt
given in the plane

(
log

(
vs

1 arcsec.s−1

)
, log

(
max(δ f exp

0 (t))
1 Hz

))
. Right panel: ξamp =

max(δ f meas
0 (t))

max(δ f exp
0 (t)) given in the same plane.

Iso-contours at 0.9, 0.95, 0.99, 1.01, 1.05 and 1.1 are represented. The KID used here is modeled by the transfer function of Equation 2 with the
parameters Z0 = 50 Ω, Qi = 2 × 105, Qe = 5 × 104, f0 = 1.5 × 109, and X1 = X2 = 3 Ω.
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